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1. Numerical Solution of Engineering Problems 

 
Engineering calculations are essential components of the design process. Any equipment must 
be designed in such a way that its functionality is ensured while satisfying different 
requirements related to cost, overall dimensions, manufacturing procedures, reliability, etc. 
Such requirements often lead to the imposition of some constraints whose fulfillment should 
be assessed by engineering calculations (for example, not exceeding a maximum stress, strain 
or deflection level, guaranteeing the fatigue strength, etc.). Engineering calculations provide 
the information from which the designer can deduce how close the structural components are 
to the limit states that could compromise the functionality of the whole equipment. 

 

The variety of problems that occur in practice is reflected in the multitude of calculation 
methods used at present. These methods have been gradually developed, along with the 
accumulation of technical and theoretical knowledge and, in the last seven decades, 
simultaneously with the evolution of digital computers. A basic classification of the calculation 
methods used in engineering distinguishes two large categories: 3 

• Exact (or analytical) methods 
• Approximate methods. 

Exact methods are applicable only for solving a relatively small number of simple problems. 
Their use is generally restricted by the geometry of the model under analysis and the type of 
boundary conditions. Approximate methods are used to solve more complex problems, for 
which analytical solutions cannot be found. 

There is a wide variety of approximate methods for solving engineering problems. 
Whatever method is adopted by the designer, it must provide a sufficiently accurate solution 
for the practical problem under analysis. Nowadays, the following approximate methods of 
numerical type are mainly used in engineering: 

• Finite difference method (FDM) 
• Finite element method (FEM) 
• Boundary element method (BEM). 



 

 

At first glance, these methods seem very different from each other. On closer inspection, it 
can be noticed that they are closely related by their mathematical foundations (all of them 
rely on notions belonging to the theory of differential equations, calculus of variations, or 
weighted residual methods). In the following, we will make a brief presentation of these 
numerical methods, in order to compare them from the point of view of the specific 
advantages and disadvantages. 

 
 

Finite difference method (FDM) 
 
 

The finite difference method is the simplest procedure for solving sets of ordinary or partial 
differential equations. For the practical application of FDM, the spatial domain occupied by 
the physical system under analysis is replaced by a rectangular grid consisting of nodes. The 
differential equations that describe the physical system are approximated with finite 
differences evaluated at nodes [Tho1995]. In this way, the set of differential equations is 
transformed into a set of algebraic equations which is then solved using numerical procedures 
(for example, Gaussian elimination [Dem1981]). The approximate solution is represented by 4 
the unknown values associated to the nodes. In general, the accuracy of this solution can be 
improved by densifying the grid. 

The main advantages of FDM are its conceptual simplicity and straightforward 
implementation in computer programs. FDM still has some shortcomings that restrict its 
applicability: 

• FDM only provides nodal values of the unknowns, without providing information about 
their distribution between nodes. 

• The discretization of complex shaped bodies using only rectangular grids often leads 
to poor approximations at corners or in the regions where important cross-sectional 
variations occur. 

• FDM has difficulties when complex boundary conditions must be implemented in the 
numerical scheme. 

Because of these disadvantages, FDM is mainly used for solving heat transfer or fluid flow 
problems, its applicability in the field of solid mechanics being quite limited. 



 

 

 

Finite element method (FEM) 
 

At present, the finite element method is the most frequently used procedure for solving 
engineering problems expressed by sets of ordinary or partial differential equations. When 
applying FEM, the spatial domain occupied by the physical system under analysis is divided 
into a finite number of subdomains. The spatial domain is thus replaced by the so-called finite 
element mesh [Hen1996, Hut2004, Sab2021, Seg1984]. The differential equations that 
describe the physical system are approximated at element level. 

 

The mathematical structure of these approximations ensures their continuity across 
interelement boundaries. The continuity is achieved with the help of some remarkable points 
associated to the elements (the so-called nodes). In fact, the approximations are controlled 
by the nodal values of the problem unknowns. FEM produces a set of algebraic equations 
which is solved numerically for the values of the nodal unknowns. Since the approximations 
generated by FEM work at element level, they provide information on how the unknowns are 
distributed over the entire mesh (not only at nodes, as in the case when FDM is used). 

The main advantages of FEM are the following ones: 5 

• Flexibility (since it allows meshing complex-shaped bodies and manipulating all types 
of boundary conditions in the most natural manner) 

• Capability of modeling inhomogeneous bodies in terms of their physical properties 
• Ease of implementation in general computer programs. 

The most important disadvantage of FEM consists in the large amount of input data required 
for the construction and solution of the numerical model. Most of the input data describes 
the configuration of the finite element mesh (nodal coordinates and association between 
elements and nodes). Modern finite element programs relieve the user of the cumbersome 
task of manual discretization, transferring it to specialized modules that perform this 
operation in an automatic manner. 

Numerous finite element programs have been developed during the last four decades. 
Most of them are interfaced with computer-aided design software packages so that their use 
by engineers is relatively simple. 



 

 

 

Boundary element method (BEM) 
 

The boundary element method has been elaborated more recently than FDM and FEM. BEM 
is based on the idea of replacing the original set of differential equations with an equivalent 
integral model defined only on the boundary of the analysis domain [Bre1978]. The boundary 
integral model is advantageous because it no longer needs a mesh generated over the interior 
of this domain. The number of problem unknowns and the amount of input data are thus 
significantly reduced. From the point of view of its practical utilization, BEM is very similar to 
FEM, in the sense that the boundary of the analysis domain is meshed using elements built 
according to principles similar to those adopted by FEM. BEM also produces a set of algebraic 
equations that must be solved numerically for the values of the unknowns associated to the 
nodes of the boundary elements. Once the values of the nodal unknowns are obtained, the 
distribution of any quantity over the entire analysis domain can be determined using a set of 
specific formulas. 

 

Besides the previously mentioned advantage, BEM has some other attractive features: 

• It can be naturally applied in the case of spatial domains that extend to infinity in one 6 

or several directions. 
• It can provide accurate solutions at corners or in regions where important cross- 

sectional variations occur, without requiring an excessive refinement of the mesh 
(unlike FEM which frequently needs refined meshes in such situations). 

• It can be easily accommodated by computer-aided design software packages. 

BEM still has some disadvantages that restrict its applicability: 
 

• Serious difficulties in modeling inhomogeneous bodies in terms of their physical 
properties 

• Poor accuracy of the numerical solution in the case of bodies exhibiting major 
dimensional discrepancies in different directions (e.g., bars, beams, plates, or shells). 

However, it must be kept in mind that BEM is still under intense development, so that future 
research is expected to alleviate these shortcomings. 



 

 

The discussion above allows us to understand why FEM is nowadays the most appropriate 
procedure for the numerical solution of engineering problems expressed by sets of ordinary 
or partial differential equations. The penetration of FEM in all engineering fields has been 
facilitated by its generality and flexibility, as well as the large number of finite element 
programs interfaced with computer-aided design software packages. 

The development potential of FEM is far from being exhausted. Many researchers are 
currently involved in the elaboration of finite elements to meet the needs of the most diverse 
engineering applications. The finite element programs are also continuously developed with 
the aim of exploiting the processing capabilities of high-performance computers (e.g., parallel 
computing), as well as ensuring the most natural integration of the finite element analysis in 
the computer-aided design process [WWW2022a]. 
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2. Features of the Finite Element Method 

 
From a mathematical point of view, many engineering problems are expressed by sets of 
ordinary or partial differential equations. FEM is one of the numerical procedures that can be 
used to obtain approximate solutions of such problems. 

FEM builds the approximation of the exact solution as follows: 
 

• The spatial domain occupied by the physical system under analysis is divided into a 
finite number of non-overlapping subdomains called (finite) elements. 

• Polynomial approximations of the problem unknowns are defined over each element. 
• Each polynomial depends on the unknown values associated to a finite set of points 

called nodes. 
• The element approximations are assembled into a global approximation of the 

problem unknowns. 
 

The global approximation must be understood as a function that depends on a finite set of 8 
undetermined parameters. These parameters are the unknown values associated to the nodes 
of the finite element mesh. By assigning arbitrary values to the parameters, we obtain an 
infinite set of global approximations that are virtually acceptable for the problem under 
analysis. This set is usually called family of test functions [Hen1996, Hut2004, Seg1984]. FEM 
searches among the test functions for the best global approximation of the exact solution. 

In fact, FEM provides the most accurate approximation of the exact solution over the 
entire spatial domain (not only at specific points). With this aim in view, FEM uses a global 
criterion for minimizing the errors of the numerical solution. The set of partial differential 
equations cannot be used directly for obtaining such a criterion. This is because differential 
operators describe only the local behavior of the unknown quantities. The minimum criterion 
used by FEM is built in the form of an integral defined over the entire domain occupied by the 
physical system under analysis. It is known that, unlike derivatives, an integral can describe 
the behavior of one or more functions averaged over the integration domain. Integrals are 
thus more suitable for obtaining global minimization criteria. In the case of elasticity problems, 
this criterion is expressed by the theorem of minimum potential energy. 



 

 

By enforcing the condition that the numerical solution corresponds to the minimum error, 
FEM generates a set of algebraic equations. These equations are solved for the nodal values 
of the problem unknowns. After replacing the nodal values in the expressions of the element 
polynomials, FEM obtains approximations of the unknowns defined at element level. Finally, 
the element approximations build together a global approximation of the solution (i.e., an 
approximation defined over the entire mesh). 

 

In the specific case of elasticity problems, the steps performed when elaborating and 
solving a finite element model are as follows: 

• Selecting the finite element type which is the most suitable for the problem under 
analysis 

• Meshing the analysis domain 
• Generating element approximations for the problem unknowns 
• Including the element approximations in the expression of the potential energy 
• Enforcing the minimum condition on the finite element approximation of the potential 

energy and assembling the set of equations emerging from this condition 
• Applying the boundary conditions by reducing the set of equations 9 
• Solving the set of equations for the nodal unknowns 
• Reconstructing the element approximations and assembling them into a global 

approximation 
• Analyzing the numerical results. 

In practical applications, when modern finite element programs are used, most of the 
steps mentioned above are automated. The geometric representation of the analysis domain 
is generated using a CAD program or the modeling facilities provided by the finite element 
program itself. The mesh is then generated automatically by the finite element program (the 
analyst is responsible for selecting the element type and controlling the mesh density). In the 
next stage, the analyst applies external loads and motion constraints to the finite element 
model. The finite element program now has all the information needed for generating the set 
of equations. The assemblage and numerical solution of the set of equations are fully 
automated steps. Modern finite element programs generally provide tools for the graphical 
presentation of numerical results. In this way, the analyst is also assisted in interpreting the 
output data. 



 

 

 
3. Common Types of Finite Elements 

 
The discretization of the analysis domain is the first step that must be performed when using 
FEM to obtain the numerical solution of a problem. Discretization involves making decisions 
on the type, number and size of the finite elements to be used. FEM users must find a balance 
between the quality of the numerical solution and the computational effort needed for 
obtaining it. In general, increasing the density of the finite element mesh improves the 
accuracy of the numerical solution. However, an excessively refined mesh leads to a large set 
of global equations and, consequently, involves an increased computational effort in the 
solution stage. The analyst must use his/her theoretical knowledge and engineering expertise 
to refine the mesh only in the regions where steep gradients of the problem unknowns are 
expected. In the regions where the variation of the unknowns is expected to be smoother, the 
mesh can be coarsened without affecting the accuracy of the numerical solution. 

 

The quality of the numerical solution is also influenced by the mathematical features of 
the finite element in use. In general, the analyst must choose an element whose properties 10 
(especially the degree of the polynomial approximation) are appropriate to the type of 
problem to be solved. The importance of choosing the element type should never be 
underestimated, since a wrong decision in this stage might lead to inaccurate solutions. In 
practice, most of the poor decisions made by FEM users in the discretization stage are due to 
the following reasons: 

• Insufficient knowledge of the theory behind the problem under analysis 
• Lack of information on the mathematical features of the finite elements used for 

meshing the analysis domain. 

Even if the user relies on a high-performance finite element program, he/she is not fully 
relieved of having such knowledge. 

In what follows we will describe a few types of finite elements suitable for solving 
engineering problems. The limited space does not allow us to present all the finite elements 
that might be used in applications. References [Hen1996, Hut2004, Seg1984] could be helpful 
to the reader interested in getting further information about different types of finite elements 



 

 

and their usage in practice. The manuals of the finite element programs also provide valuable 
information about these topics. 

 
 

3.1. Classification of finite elements 
 

A general classification (but not comprehensive, unfortunately) defines three categories of 
finite elements differentiated by their dimensionality: 

• One-dimensional elements 
• Two-dimensional elements 
• Three-dimensional elements. 

 

This classification is far from capturing all the finite element features. For example, it does not 
make any reference to the degree of the polynomial approximation. Under such 
circumstances, some other criteria can be used to define subclassifications within each of the 
categories mentioned above. For example, if the degree of the polynomial approximation is 

considered, the following subcategories of finite elements can be individualized: 
11

 

• First order (or linear) elements 
• Second order (or quadratic) elements 
• Third order (or cubic) elements 
• … 

Finite elements having a degree of the polynomial approximation greater than three are rarely 
used in practical applications. 

Although this second criterion clarifies an entire series of aspects, it is not exhaustive 
either. In fact, it is impossible to devise a unique criterion for classifying all the finite elements 
used in practical applications. There are types of elements that can hardly be included in a 
particular class, especially those having a higher mathematical complexity. 

Despite their limitations, the classification criteria mentioned above are sufficient for our 
purposes. We will rely on them when presenting some finite element types frequently used 
for solving engineering problems. 



 

 

3.1.1. One-dimensional elements 
 
 

One-dimensional elements are used when the physical quantity that needs to be 
approximated depends on a single variable. By consequence, one-dimensional elements are 
straight or curved lines along which the independent variable of the problem takes values (Fig. 
3.1). 

The simplest one-dimensional element is a line segment ended by two nodes (Fig. 3.1.a). 
A first-degree polynomial approximation is associated to this element. This is the reason for 
calling it first order (or linear) one-dimensional element. 

The second order (Fig. 3.1.b) and third order (Fig. 3.1.c) elements are more complex. One 
may notice that they have both end and internal nodes. The second order elements have three 
nodes, their polynomial approximation being of the parabolic type. The third order elements 
have four nodes, their polynomial approximation being a cubic parabola. Both the second and 
third order one-dimensional elements have curved versions as shown in Figure 3.1. 
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Figure 3.1: One-dimensional finite elements: (a) First order (or linear). (b) Second order (or 
quadratic). (c) Third order (or cubic) 

 
 

3.1.2. Two-dimensional elements 
 
 

Two-dimensional finite elements are used when the physical quantity that needs to be 
approximated depends on two variables. For example, they can be used for solving two- 
dimensional elasticity problems (i.e., plane stress, plane strain or axially symmetric problems). 



 

 

Two-dimensional finite elements can be subdivided in two large classes distinguished by 
their shapes: 

• Triangular elements (Fig. 3.2) 
• Quadrilateral elements (Fig. 3.3). 

As their name suggests, triangular elements are planar regions bounded by three sides. 
The simplest is the triangle with straight sides and three nodes placed at the vertices (Fig. 
3.2.a). The approximation associated to the element shown in Figure 3.2.a is a first-degree 
polynomial in two variables. This is the reason for calling it a first order (or linear) triangular 
element. 
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Figure 3.2: Triangular finite elements: (a) First order (or linear). (b) Second order (or 
quadratic). (c) Third order (or cubic) 



 

 

More complex triangular elements are those of the second order (Fig. 3.2.b) and third 
order (Fig. 3.2.c). They have nodes not only at the vertices but also on the sides. The third 
order triangular element even has an internal node. The approximations associated to the 
higher order triangular elements shown in Figures 3.2.b and 3.2.c are complete second-degree 
and third-degree polynomials, respectively (of course, these polynomials depend on two 
variables). One may notice in Figure 3.2 that higher order triangular elements have versions 
with curved sides. The triangular elements having an order greater than two are rarely used 
in practice, because they are computationally expensive due to the large number of nodes. 
This remark is also valid for other classes of finite elements. In general, users tend to prefer 
elements that can ensure a sufficiently accurate approximation defined over a minimal set of 
nodes. 

Quadrilateral elements are planar regions bounded by four sides. The simplest member of 
this family is the quadrilateral element with straight sides and four nodes placed at the 
vertices (Fig. 3.3.a). The associated polynomial approximation is a bilinear function. 
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Figure 3.3: Quadrilateral finite elements: (a) Bilinear. (b) Biquadratic. (c) Bicubic 



 

 

Figure 3.3.b shows the 8-node quadrilateral element together with its curved version. The 
associated polynomial approximation is a biquadratic function. Finally, Figure 3.3.c presents 
both the straight and curved versions of the 12-node quadrilateral element. The polynomial 
approximation associated to this element is a bicubic function. Many users consider the 
biquadratic element as having too many nodes. Because of this, the bilinear quadratic element 
is generally preferred in practical applications. 

 
 

3.1.3. Three-dimensional elements 
 
 

Among the numerous types of three-dimensional finite elements, the following ones are 
frequently used for solving engineering problems: 

• Tetrahedral elements (Fig. 3.4) 
• Hexahedral elements (Fig. 3.5). 
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Figure 3.4: Tetrahedral finite elements: (a) First order (or linear). (b) Second order (or 
quadratic) 



 

 

 

 
 

Figure 3.5: Hexahedral finite element of the trilinear type 
 
 

In the three-dimensional space, a growth of the polynomial approximation degree causes a 
significant increase of the node number needed for defining such an approximation. Under 
such circumstances, users tend to limit their choice to the elements having a lower degree of 
the polynomial approximation. We will also limit ourselves to describing the three-      16 
dimensional elements that are frequently adopted in applications. 

Figure 3.4.a shows the simplest tetrahedral element. It has planar faces and four nodes 
placed at the vertices. The approximation associated to the element in Figure 3.4.a is a first- 
degree polynomial in three variables. This is the reason for calling it a first order (or linear) 
tetrahedral element. 

Figure 3.4.b shows the second order (or quadratic) tetrahedral element in the versions 
with planar and curved faces. One may notice that, besides the set of four nodes located at 
the vertices, this element has six extra nodes placed on its edges. The associated 
approximation is a complete polynomial of the second degree depending on three variables. 

Among the hexahedral elements, the one which is almost exclusively used in applications 
is the 8-node hexahedral element with straight edges shown in Figure 3.5. The associated 
polynomial approximation is a trilinear function. There are also hexahedral elements of a 
higher order (with curved versions), but they are rarely used because their polynomial 
approximations need an excessive number of nodes. 



 

 

 

3.2. General rules to be applied when selecting the finite element type 
 

Finite elements are complex entities individualized by the following features: spatial 
configuration, number and position of associated nodes, and typology of the polynomial 
approximations. The number of associated nodes and the typology of the polynomial 
approximations are closely related, since the nodal values of the unknown quantity define the 
polynomial coefficients. 

 

In general, higher-degree polynomials ensure more accurate approximations. However, 
an increase of the polynomial degree causes a significant growth in the number of element 
nodes. We thus have to find a balance between the accuracy of the numerical solution and 
the computational effort needed for obtaining it. In practice, the following rules can be 
applied: 

• When solving two-dimensional problems, bilinear quadrilateral elements should be 
used instead of the linear triangular ones (the former elements, having polynomial 
approximations of a higher degree, provide more accurate solutions at the cost of a 
moderate growth in the number of nodes). 17 

• Similarly, in the case of three-dimensional problems, trilinear hexahedral elements 
provide more accurate solutions than the linear tetrahedral elements (however, this 
improvement in performance implies a doubled number of nodes at the level of each 
element). 

We therefore keep in mind that finite elements having first-degree polynomial 
approximations should be avoided as much as possible in practical applications. On the other 
hand, when selecting the type of finite element to be used, we should also estimate the 
computational effort needed for obtaining the numerical solution. 



 

 

4. Example: Finite Element Analysis of a Wrist Hand Orthosis 

4.1. Introduction 
 
 

This chapter is focused on exemplifying the practical manner in which FEM can be used to 
evaluate the strength characteristics of a wrist hand orthosis (WHO) by simulating a 
compression test with the finite element analysis (FEA) module SolidWorks Simulation 
[WWW2022c] included in the SolidWorks CAD package [WWW2022b]. The principle of the 
compression test is shown in Figure 4.1. As one may notice, the lower and upper parts of the 
orthosis are assembled together and placed between two blocks: the support block which is 
fixed and the pressure block which applies a vertical compression load upon the orthosis. The 
compression load gradually increases from 0 (zero) to 4000 N. The contact between the 
lower/upper parts of the orthosis and the support/pressure blocks takes place along perfectly 
matching surfaces. 

18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Principle of the compression test simulated for evaluating the strength 
characteristics of the wrist hand orthosis (WHO) 



 

 

The following hypotheses are adopted when preparing the finite element model of the 
compression test: 

• The lower and upper parts of the orthosis are made of ABS exhibiting an isotropic linear 
elastic behavior. 

• The support and pressure blocks are perfectly rigid bodies. 
• The lower and upper parts of the orthosis are bonded together along their contact 

surfaces. 
• The lower/upper parts of the orthosis and the support/pressure blocks are also 

bonded together along their contact surfaces. 

The contact surfaces of the individual parts are already defined as selection sets in the 
assembly model: 

 

Selection-Set1(36) 
Support_block_vs_WHO_lower_part 
Selection-Set2(1) 
WHO_lower_part_vs_Support_block 

 
Selection-Set3(3) 
WHO_lower_part_vs_WHO_upper_part 

 
Selection-Set4(3) 
WHO_upper_part_vs_WHO_lower_part 

 
Selection-Set5(2) 
WHO_upper_part_vs_Pressure_block 

 
Selection-Set6(31) 
Pressure_block_vs_WHO_upper_part 

– surface of the support block along which the 
contact with the WHO lower part may occur 

– surface of the WHO lower part along which 
the contact with the support block may 
occur 
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– surface of the WHO lower part along which 
the contact with the WHO upper part may 
occur 

– surface of the WHO upper part along which 
the contact with the WHO lower part may 
occur 

– surface of the WHO upper part along which 
the contact with the pressure block may 
occur 

– surface of the pressure block along which 
the contact with the WHO upper part may 
occur. 

The selection sets listed above ease the procedure of defining contact interactions between 
different parts of the assembly. 



 

 

The displacement (deflection), force and stress quantities manipulated by the FEA model 
are expressed using the following measurement units: 

Displacement (deflection) – millimeter [mm] 
Force – Newton [N] 
Stress – megapascal [MPa] (1 MPa = 1 N/mm2). 

 

4.2. Preparation of the finite element model 
 

The FEA model of the compression test (Fig. 4.1) is developed by performing the following 
steps: 

a) Open the WHO assembly model in SolidWorks (Fig. 4.2). 
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Figure 4.2: WHO assembly model open in SolidWorks 

b) Activate the SolidWorks Simulation module by accessing the “SOLIDWORKS Add-Ins” tab 
of the “Command Manager” toolbar (Fig. 4.3) and pressing the “SOLIDWORKS Simulation” 
button (Fig. 4.4). Consequently, the “Simulation” tab is included in the “Command 
Manager” toolbar (Fig. 4.5). 



 

 

c) Change some working parameters of the SolidWorks Simulation module by accessing the 
“Simulation” menu and selecting the “Options…” command (Fig. 4.6). Consequently, the 
“System Options – General” window is displayed. In the “Default Options” panel, select 
the SI (MKS) unit system, then change the following measurement units: 
length/displacement [mm] and pressure/stress [N/mm2] (Fig. 4.7). 

d) Enter the “Simulation” toolbar and press the “New Study” button (Fig. 4.8) to create a new 
FEA model having the following characteristics (Fig. 4.9): 
• name of the FEA model: “Static 1” 
• type of the FEA model: “Static”. 

Press the “OK” button placed at the upper-left corner of the “Study” window (Fig. 4.9). 
 

 

Figure 4.3: “SOLIDWORKS Add-Ins” tab in the “Command Manager” toolbar 
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Figure 4.4: “SOLIDWORKS Simulation” button in the “SOLIDWORKS Add-Ins” toolbar 
 

Figure 4.5: “Simulation” tab included in the “Command Manager” toolbar after the 
activation of the SolidWorks Simulation module 



 

 

 

 
 

Figure 4.6: “Options…” command in the “Simulation” menu 
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Figure 4.7: Changes to be made in the “Default Options” panel of the “System Options – 
General” window 



 

 

 

 
 

Figure 4.8: Creation of a new FEA model 
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Figure 4.9: Defining the name and type of the new FEA model 

e) Unroll the “Parts” entry of the FEA tree, select the parts called “Pressure_block-1” and 
“Support_block-1”, press the right button of the mouse on any of them, and select the 
“Make Rigid” command in the drop-down menu (Fig. 4.10). This action defines the 
pressure block and support block as perfectly rigid bodies. 



 

 

f) Unroll the “Parts” entry of the FEA tree, select the parts called “WHO_lower_part-1” and 
“WHO_upper_part-1”, press the right button of the mouse on any of them, and select the 
“Apply/Edit Material” command in the drop-down menu (Fig. 4.11). Consequently, the 
“Material” window is displayed (Fig. 4.12). In that window, look for the “Plastics” category 
of the “SOLIDWORKS Materials” library, unroll it, select the “ABS” material, then press the 
buttons “Apply” and “Close” placed at the bottom of the “Material” window. 

Note: The tensile strength Rm = 30 MPa (see the ABS material data listed in Figure 4.12) 
defines the upper limit of the von Mises equivalent stress that can be supported by the 
lower and upper parts of the orthosis. 

g) Unroll the “Connections” and “Component Interactions” entries of the FEA tree, press the 
right button of the mouse on “Global Interaction (-Bonded-Meshed Independently-)”, and 
select the “Delete” command in the drop-down menu (Fig. 4.13). 

 

Note: If active, the “Global Interaction” option allows the solver to detect the contact 
surfaces in an automatic manner. Even though it seems convenient to the user, this 
strategy must be avoided when complex-shaped surfaces are involved in contact 

interactions, because it dramatically increases the computation time. In such cases, the 24 
user should explicitly define the contact surfaces (see the next step). 

h) Press the right button of the mouse on the “Connections” entry of the FEA tree and select 
the “Local Interaction…” command in the drop-down menu (Fig. 4.14). Perform the 
following actions in the “Local Interactions” dialogue box to define the contact interaction 
between the support block and the lower part of the orthosis (Fig. 4.15): 
• Select “Bonded” instead of “Contact” in the “Type” drop-down list of the “Local 

Interactions” dialogue box 
• Press the left button of the mouse in the “Faces, Edges, Vertices for Set 1” selection 

box of the “Local Interactions” dialogue box 
• Unroll the assembly tree placed at the upper-left corner of the SolidWorks graphics 

area 
• Unroll the “Selection Sets” entry of the assembly tree 
• Select “Selection-Set1(36) Support_block_vs_WHO_lower_part” in the assembly tree 
• Press the left button of the mouse in the “Faces, Edges for Set 2” selection box of the 

“Local Interactions” dialogue box 



 

 

• Select “Selection-Set2(1) WHO_lower_part_vs_Support_block” in the assembly tree 
• Press the “OK” button of the “Local Interactions” dialogue box. 

 

Press the right button of the mouse on the “Connections” entry of the FEA tree and select 
the “Local Interaction…” command in the drop-down menu (Fig. 4.14). Perform the 
following actions in the “Local Interactions” dialogue box to define the contact interaction 
between the lower and upper parts of the orthosis (Fig. 4.16): 

• Select “Bonded” instead of “Contact” in the “Type” drop-down list of the “Local 
Interactions” dialogue box 

• Press the left button of the mouse in the “Faces, Edges, Vertices for Set 1” selection 
box of the “Local Interactions” dialogue box 

• Select “Selection-Set3(3) WHO_lower_part_vs_WHO_upper_part” in the assembly 
tree 

• Press the left button of the mouse in the “Faces, Edges for Set 2” selection box of the 
“Local Interactions” dialogue box 

• Select “Selection-Set4(3) WHO_upper_part_vs_WHO_lower_part” in the assembly 
tree 25 

• Press the “OK” button of the “Local Interactions” dialogue box. 

Press the right button of the mouse on the “Connections” entry of the FEA tree and select 
the “Local Interaction…” command in the drop-down menu (Fig. 4.14). Perform the 
following actions in the “Local Interactions” dialogue box to define the contact interaction 
between the pressure block and the upper part of the orthosis (Fig. 4.17): 

• Select “Bonded” instead of “Contact” in the “Type” drop-down list of the “Local 
Interactions” dialogue box 

• Press the left button of the mouse in the “Faces, Edges, Vertices for Set 1” selection 
box of the “Local Interactions” dialogue box 

• Select “Selection-Set6(31) Pressure_block_vs_WHO_upper_part” in the assembly tree 
• Press the left button of the mouse in the “Faces, Edges for Set 2” selection box of the 

“Local Interactions” dialogue box 
• Select “Selection-Set5(2) WHO_upper_part_vs_Pressure_block” in the assembly tree 
• Press the “OK” button of the “Local Interactions” dialogue box. 



 

 

i) Press the right button of the mouse on the “Fixtures” entry of the FEA tree and select the 
“Fixed Geometry…” command in the drop-down menu (Fig. 4.18). Perform the following 
actions in the “Fixture” dialogue box to define a full locking boundary condition on the 
lower face of the support block (Fig. 4.19): 
• Press the left button of the mouse in the “Faces, Edges, Vertices for Fixture” selection 

box of the “Fixture” dialogue box 
• Select the lower face of the support block in the graphics area 
• Press the “OK” button of the “Fixture” dialogue box. 

j) Press the right button of the mouse on the “Fixtures” entry of the FEA tree and select the 
“Roller/Slider…” command in the drop-down menu (Fig. 4.20). Perform the following 
actions in the “Fixture” dialogue box to enforce the vertical sliding of the pressure block 
(Fig. 4.21): 
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Figure 4.10: Defining the pressure block and support block as perfectly rigid bodies 



 

 

 

 
 

Figure 4.11: Defining the material properties of the lower and upper parts of the orthosis 
27 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12: Associating the ABS material to the lower and upper parts of the orthosis 



 

 

 

 
 

Figure 4.13: Removing the “Global Interaction” option from the FEA tree 28 
 

Figure 4.14: Defining a pair of contact surfaces by means of the “Local Interaction…” 
command 



 

 

 

 
 

Figure 4.15: Defining the contact interaction between the support block and the lower part 
of the orthosis 
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Figure 4.16: Defining the contact interaction between the lower and upper parts of the 
orthosis 



 

 

 

 
 

Figure 4.17: Defining the contact interaction between the pressure block and the upper part 
of the orthosis 
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Figure 4.18: Defining a full locking boundary condition 



 

 

 

 
 

Figure 4.19: Full locking boundary condition enforced on the lower face of the support block 
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Figure 4.20: Defining a sliding boundary condition 
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Figure 4.21: Enforcing the vertical sliding of the pressure block 
 

• Press the left button of the mouse in the “Faces for Fixture” selection box of the 
“Fixture” dialogue box 

• Select the front and right-lateral faces of the pressure block in the graphics area 
• Press the “OK” button of the “Fixture” dialogue box. 

Note: Since the pressure block is treated as a rigid body and its front and right-lateral faces 
are vertical and reciprocally perpendicular, the sliding boundary condition defined on 
these faces enforces the vertical displacement of this part. This motion is controlled by a 
normal force acting on the upper face of the pressure block (see the next step). 

k) Press the right button of the mouse on the “External Loads” entry of the FEA tree and 
select the “Force…” command in the drop-down menu (Fig. 4.22). Perform the following 



 

 

actions in the “Force/Torque” dialogue box to define the normal force that acts on the 
upper face of the pressure block (Fig. 4.23): 
• Press the left button of the mouse in the “Faces and Shell Edges for Normal Force” 

selection box of the “Force/Torque” dialogue box 
• Select the upper face of the pressure block in the graphics area 
• Do not change the force specified by default (1 N) in the “Force Value” input box of the 

“Force/Torque” dialogue box 
• Press the “OK” button of the “Force/Torque” dialogue box. 

Note: The actual values of the normal force acting on the upper face of the pressure block 
are defined in step (m) as load cases. 

 

l) Press the right button of the mouse on the “Mesh” entry of the FEA tree and select the 
“Create Mesh…” command in the drop-down menu (Fig. 4.24). Perform the following 
actions in the “Mesh” dialogue box to generate the finite element mesh (Fig. 4.25): 
• Activate the “Mesh Parameters” checkbox 
• Select the “Curvature-based mesh” radio button in the “Mesh Parameters” region 
• Specify the maximum element size in the “Maximum element size” input box: 20 (this 33 

quantity is expressed in millimeters by default) 
• Specify the minimum element size in the “Minimum element size” input box: 2 (this 

quantity is expressed in millimeters by default) 
• Press the “OK” button of the “Mesh” dialogue box. 

Notes: 

• SolidWorks Simulation uses by default the so-called standard meshing algorithm which 
works well in the case of bodies having regular shapes. This algorithm often fails to 
generate a consistent mesh for bodies having irregular boundaries. In such situations, 
the curvature-based meshing algorithm is the best alternative. 

• The finite element mesh generated by SolidWorks Simulation is shown in Figure 4.26. 
m) Press the right button of the mouse on the root of the FEA tree and select the “Load Case 

Manager” command in the drop-down menu (Fig. 4.27). Consequently, the “Load Case 
View” tab is displayed at the bottom of the SolidWorks graphics area (Fig. 4.28). Perform 
the following actions in that tab to define the actual values of the normal force acting on 
the upper face of the pressure block: 
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Figure 4.22: Defining a force-type boundary condition 



 

 

 

 
 

Figure 4.23: Defining the normal force that acts on the upper face of the pressure block 
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Figure 4.24: Initiating the generation of the finite element mesh 
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Figure 4.25: Defining the control parameters of the finite element mesh 
 

Figure 4.26: Finite element mesh generated by SolidWorks Simulation 
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Figure 4.27: Accessing the Load Case Manager 
 

 
• Press the left button of the mouse in the box labeled “+ Click here to add a primary 

load case” to define the first load case (Fig. 4.28) 
• Replace the “Suppress” status of the “Force-1” cell with 0 (zero) i.e., the actual value 

of the normal force corresponding to “Load Case 1” (Fig. 4.29) 
• Press the left button of the mouse in the box labeled “+ Click here to add a primary 

load case” to define the second load case (Fig. 4.29) 
• Replace the “Suppress” status of the “Force-1” cell with 500 i.e., the actual value of 

the normal force corresponding to “Load Case 2” (Fig. 4.30) 
• Proceed in the same manner to define “Load Case 3”: 1000 N, “Load Case 4”: 1500 N, 

“Load Case 5”: 2000 N, “Load Case 6”: 2500 N, “Load Case 7”: 3000 N, “Load Case 8”: 
3500 N, and “Load Case 9”: 4000 N (Fig. 4.31) 
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Figure 4.28: “Load Case View” tab displayed at the bottom of the SolidWorks graphics area 
 

 
• Press the left button of the mouse in the box labeled “+ Click here to add a sensor to 

track a result” (Fig. 4.31) 
• Select the “+ Add Sensor…” command in the drop-down list displayed at the bottom 

of the “Load Case View” tab (Fig. 4.32) 
• Perform the following actions in the “Sensor” dialogue box to define a sensor for 

tracking the maximum value of the von Mises equivalent stress at the level of the lower 
and upper parts of the orthosis (Fig. 4.33): 



 

 

 

 
 

Figure 4.29: Defining the first load case (normal force of 0 N) 
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Figure 4.30: Defining the second load case (normal force of 500 N) 
 

Figure 4.31: Actual values of the normal force acting on the upper face of the pressure block 
defined as load cases 



 

 

 

 
 

Figure 4.32: Initiating the definition of a sensor for tracking the numerical results 
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Figure 4.33: Definition of a sensor for tracking the maximum value of the von Mises 
equivalent stress at the level of the lower and upper parts of the orthosis 



 

 

o Select the option “Stress” in the “Results” drop-down list 
o Select the option “VON: von Mises Stress” in the “Component” drop-down list 
o Select the option “N/mm^2 (MPa)” in the “Units” drop-down list 
o Select the option “Max over Selected Entities” in the “Criterion” drop-down list 
o Press the left button of the mouse in the “Select Components, Bodies, Faces, 

Edges or Vertices” selection box 
o Unroll the assembly tree placed at the upper-left corner of the SolidWorks 

graphics area 
o Select the lower and upper parts of the orthosis in the assembly tree 
o Press the “OK” button placed at the upper-left corner of the “Sensor” dialogue 

• Come back to the “Load Case View” tab and press again the left button of the mouse 
in the box labeled “+ Click here to add a sensor to track a result” (Fig. 4.34) 

• Select the “+ Add Sensor…” command in the drop-down list displayed at the bottom 
of the “Load Case View” tab (Fig. 4.34) 

• Perform the following actions in the “Sensor” dialogue box to define a new sensor for 
tracking the maximum deflection at the level of the lower and upper parts of the 
orthosis (Fig. 4.35): 41 

o Select the option “Displacement” in the “Results” drop-down list 
o Select the option “URES: Resultant Displacement” in the “Component” drop- 

down list 
 

Figure 4.34: Initiating the definition of a new sensor for tracking the numerical results 



 

 

 

 
 

Figure 4.35: Definition of a sensor for tracking the maximum deflection at the level of the 
lower and upper parts of the orthosis 
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Figure 4.36: Transferring the finite element model to the SolidWorks Simulation solver 



 

 

o Select the option “mm” in the “Units” drop-down list 
o Select the option “Max over Selected Entities” in the “Criterion” drop-down list 
o Press the left button of the mouse in the “Select Components, Bodies, Faces, 

Edges or Vertices” selection box 
o Unroll the assembly tree placed at the upper-left corner of the graphics area 
o Select the lower and upper parts of the orthosis in the assembly tree 
o Press the “OK” button placed at the upper-left corner of the “Sensor” dialogue. 

At this stage, the finite element model of the compression test is prepared and transferred 
to the SolidWorks Simulation solver by pressing the “Run” button of the “Load Case View” tab 
(Fig. 4.36). 

 
 

4.3. Interpretation of the numerical results 
 
 

As soon as the solver finishes its job, the control is transferred to the “Results View” tab which 
is displayed at the bottom of the graphics area. At the same time, a color map showing the 43 
distribution of the von Mises equivalent stress at the level of the entire assembly appears on 
the screen (Fig. 4.37). This distribution corresponds to the first load case. The user can explore 
the other load cases by selecting them with the left button of the mouse in the first column of 
the “Primary Load Cases” table placed at the bottom of the “Results View” tab (Fig. 4.37). 

Both the support block and pressure block are colored gray on the map showing the 
distribution of the von Mises equivalent stress (Fig. 4.37). This means that no stress 
information has been generated by the solver for them. Such a situation is normal because 
they are rigid bodies for which the stress concept is senseless. Due to the same reason, the 
support block and pressure block are uniformly colored in the deflection maps. In fact, it is 
preferable to prevent these bodies from being displayed in the graphics area since their 
volumes cover useful regions of the color maps associated to the lower and upper parts of the 
orthosis. Perform the following actions to hide the support block and pressure block: 

• Press the right button of the mouse on the item “Stress1 (-von Mises-)” item under the 
“Load Case Results” entry of the FEA tree, and select the “Hide” command in the drop- 
down menu (Fig. 4.38) 
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Figure 4.37: Analyzing the numerical results associated to different load cases with the help 
of the “Results View” tab and the “Load Case Results” entry of the FEA tree 

 
 

• Select the support block and the pressure block in the assembly tree, press the right 
button of the mouse on any of them, and press the “Hide Components” button in the 
drop-down menu (Fig. 4.39) 

• Press the right button of the mouse on the item “Stress1 (-von Mises-)” item under the 
“Load Case Results” entry of the FEA tree and select the “Show” command (Fig. 4.40). 

After these actions, the color map of the von Mises equivalent stress distribution associated 
to the first load case should look as shown in Figure 4.41. 
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Figure 4.38: Hiding the color map “Stress1 (-von Mises-)” 



 

 

 

 
 

Figure 4.39: Preventing the support block and pressure block from being displayed in the 
graphics area 46 

 

The numerical results associated to other values of the compression force applied to the 
orthosis can be examined by selecting the corresponding load cases in column 1 of the table 
“Primary Load Cases” (Fig. 4.37). For example, Figures 4.42 and 4.43 show the color maps of 
the von Mises equivalent stress distribution associated to the eighth and ninth load case, 
respectively. 

The following actions should be performed to examine the deflections of the orthosis 
associated to different load cases: 

• Press the right button of the mouse on the “Displacement1 (-Res disp-)” item under 
the “Load Case Results” entry of the FEA tree and select the “Show” command (Fig. 
4.44). 

• Select the load case to be examined in column 1 of the “Primary Load Cases” table. 

For example, Figures 4.45 and 4.46 show the color maps of the deflections associated to the 
eighth and ninth load case, respectively. 
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Figure 4.40: Displaying the color map “Stress1 (-von Mises-)” 



 

 

 

 
 

Figure 4.41: Color map showing the distribution of the von Mises equivalent stress at the 
level of the lower and upper parts of the orthosis (first load case) 
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Figure 4.42: Color map showing the distribution of the von Mises equivalent stress at the 
level of the lower and upper parts of the orthosis (eighth load case: compression force of 

3500 N) 



 

 

 

 
 

Figure 4.43: Color map showing the distribution of the von Mises equivalent stress at the 
level of the lower and upper parts of the orthosis (ninth load case: compression force of 

4000 N) 
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Figure 4.44: Displaying the color map “Displacement1 (-Res disp-)” 



 

 

 

 
 

Figure 4.45: Color map showing the deflections at the level of the lower and upper parts of 
the orthosis (eighth load case: compression force of 3500 N) 
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Figure 4.46: Color map showing the deflections at the level of the lower and upper parts of 
the orthosis (ninth load case: compression force of 4000 N) 



 

 

The maximum value of the von Mises equivalent stress, the maximum deflection, and the 
compression force corresponding to different load cases are listed in the second, third and 
fourth column of the “Primary Load Cases” table (Fig. 4.47). Table 4.1 presents this data in a 
more readable format. 

 

 

Figure 4.47: Maximum value of the von Mises equivalent stress, maximum deflection, and 
compression force corresponding to different load cases listed in the “Primary Load Cases” 

table 51 

Table 4.1: Compression force, maximum value of the von Mises equivalent stress, and 
maximum deflection corresponding to different load cases (see also Figure 4.47) 

 

Load case 
Compression force 

F [N] 
Maximum value of the von Mises 

equivalent stress σeq,max [MPa] 
Maximum deflection 

dmax [mm] 
1 0 0.00 0.000 
2 500 4.05 0.045 
3 1000 8.09 0.090 
4 1500 12.14 0.135 
5 2000 16.19 0.180 
6 2500 20.23 0.225 
7 3000 24.28 0.271 
8 3500 28.33 0.316 
9 4000 32.38 0.361 



 

 

The plots in Figures 4.48 and 4.49 show the dependencies σeq,max vs F and dmax vs F, 
respectively. Both diagrams allow noticing that the mechanical response of the orthosis is 
linear. In fact, the dependencies σeq,max vs F and dmax vs F are well approximated by the 
regressions 

σeq,max = 8.095 · 10-3 · F, (4.1) 
 

and 

dmax = 9.025 · 10-5 · F, (4.2) 
 

respectively (see the black lines in Figures 4.48 and 4.49). 
 

It can be easily seen in Table 4.1 and Figure 4.48 that σeq,max equals the tensile strength of 
the ABS material Rm = 30 MPa (as defined in the “SOLIDWORKS Materials” library – see Figure 
4.12) for a compression force 3500 N < Fm < 4000 N. This critical load results from Eq (4.1) as 
soon as the replacement σeq,max = Rm = 30 MPa is made: 

Fm = Rm · 103 / 8.095 = 30 · 103 / 8.095 ≈ 3706 N. (4.3) 

52 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.48: Dependence σeq,max vs F: red dots – numerical results taken from Table 4.1; black 
line – linear regression defined by Eq (4.1) 



 

 

 

 
 

Figure 4.49: Dependence dmax vs F: red dots – numerical results taken from Table 4.1; black 
line – linear regression defined by Eq (4.2) 53 

The results of the finite element analysis show that the wrist hand orthosis exhibits a high 
compression strength. The critical value of the compression force Fm ≈ 3706 N is much greater 
than the greatest load that normally occurs when patients wear such medical devices. Of 
course, the overall strength of the wrist hand orthosis is fully assessable only by analyzing its 
behavior in different loading conditions. As an example, the numerical simulation of a three- 
point bending test [Luk2020] could also be used for this purpose. 
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