

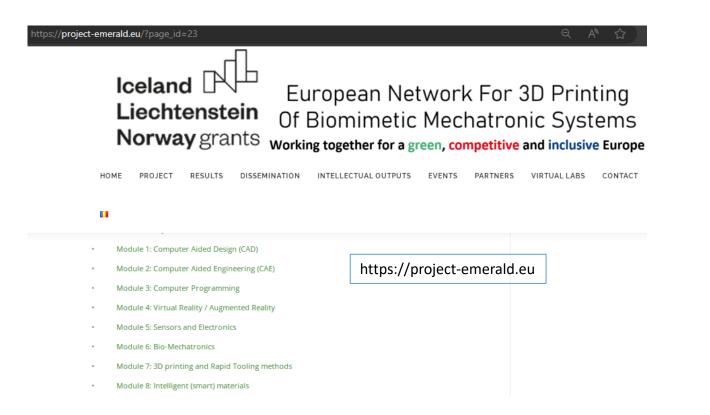
EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

Intellectual Output_01: EMERALD e-book for developing of biomimetic mechatronic systems

MODULE 4 VR/AR

Filip GÓRSKI, PhD, DSc, BEng, Associate Professor Poznan University of Technology, Faculty of Mechanical Engineering

filip.gorski@put.poznan.pl filip.gorski.employee.put.poznan.pl



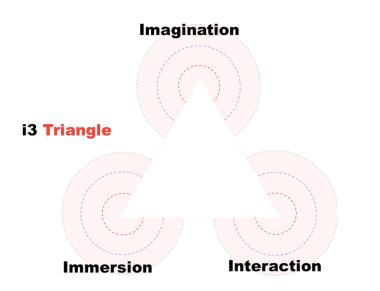
EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS

MODULE 4: VR/AR

Project Title	European Network for 3D Printing of Biomimetic Mechatronic Systems 21-COP-0019		
Output	IO1 - EMERALD e-book for developing of biomimetic mechatronic systems		
Module	Module 4 – Virtual Reality & Augmented Reality		
Date of Delivery	July 2022		
Authors	Filip GÓRSKI		
Version	V1.1		

This results was realised with the EEA Financial Mechanism 2014-2021 financial support. Its content (text, photos, videos) does not reflect the official opinion of the Programme Operator, the National Contact Point and the Financial Mechanism Office. Responsibility for the information and views expressed therein lies entirely with the author(s)

University of Agder

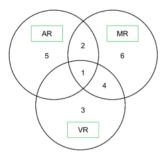

Table of contents

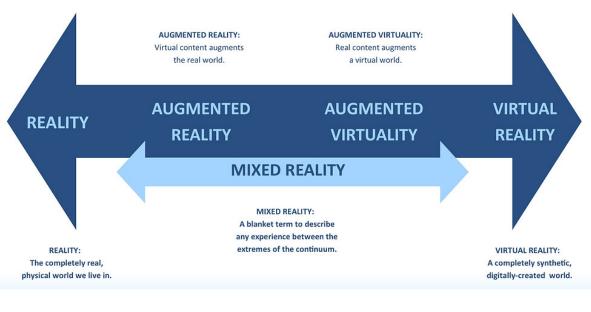
1.	Introdu	troduction		
2.	XR technology – basic concepts			
	2.1 Basic definitions		6	
	2.1.	,		
	2.1.	Augmented and Mixed Reality	8	
	2.1.	XR technologies – similarities and differences	10	
	2.2	XR systems	11	
	2.2.			
2.2.2.		2. Hardware	14	
	2.2.	3. Software		
	2.3	Applications of XR technologies	18	
3.	XR technologies in biomedical applications			
	3.1	XR simulation and application - definitions	23	
	3.2	Designing VR/AR applications for medicine and biomedical engineering	25	
	3.2.	 Requirements and types of applications 		
	3.2.	2. Process of VR/AR/MR application design		
	3.3	Building medical VR/AR applications	30	
	3.3.	1. XR application development process	30	
3.3.2.		2. Implementing and maintaining professional XR applications	34	
	3.4	Examples of VR/AR applications for medicine and biomedical engineering	36	
	3.4.	1. Wheelchair designer		
	3.4.	Fear of heights therapy		
4.	Summa	ary	41	
Liter	ature			
List	of figure	s	45	

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

I3 Triangle, on the basis of [Burdea & Langrana 1993]

Immersive interactive VR system users



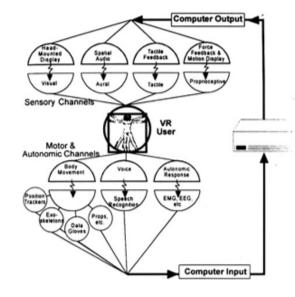


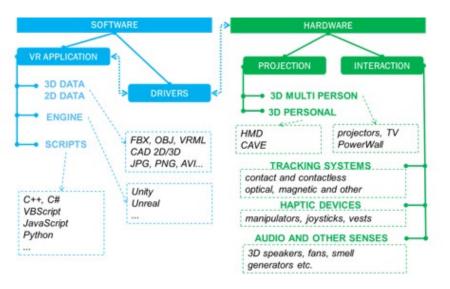
Difference between AR (left, [Meredith 2017]) and MR (right, [wired.co.uk])

1 - digital images
 2 - real world visible
 3 - immersion
 4 - user tracking
 5 - marker recognition
 6 - spatial mapping

Milgram's XR continuum [Milgram et al. 1994]

Common and distinctive features of main XR technologies





^B EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

XR systems

Basic input/output channels of VR system [Biocca & Delaney 1995]

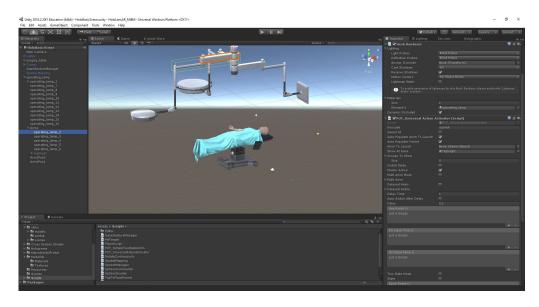
EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

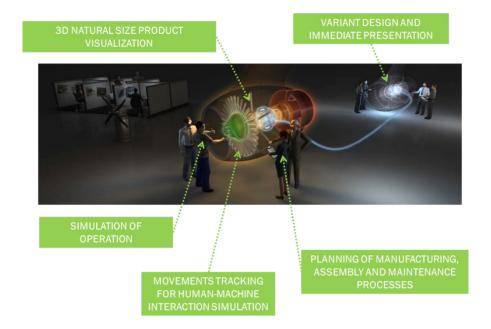
Hardware

Example of a VR headset – HTC Vive Pro – with controllers and base stations [vive.com]

VR controller example, with its virtual representation [oculus.com]

Examples of mixed reality devices – holographic goggles [microsoft.com] and a holographic diplay [3dholodisplay.com]





EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

Software and Applications of XR technologies

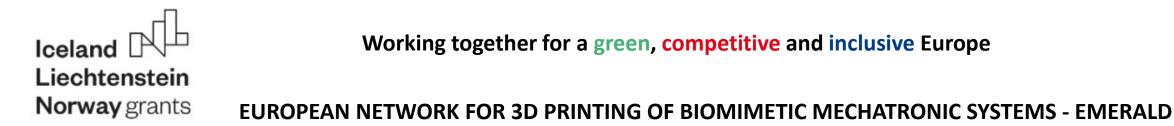
Unity game engine

Applications of VR in engineering, based on [Górski 2019]

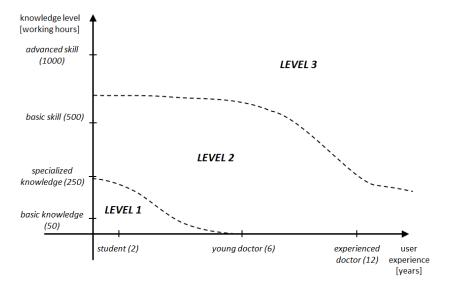
EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

Applications of XR technologies

Examples of VR use in medicine [medscape.com] and military [James 2015]



AR and MR applications [skanska.pl] [Downey 2016] [Kaminsky 2019] [fashionbi.com]



XR technologies in biomedical applications

Levels of XR applications by knowledge [Górski et al. 2017]

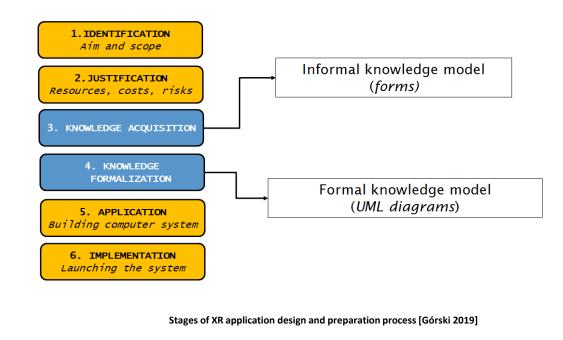
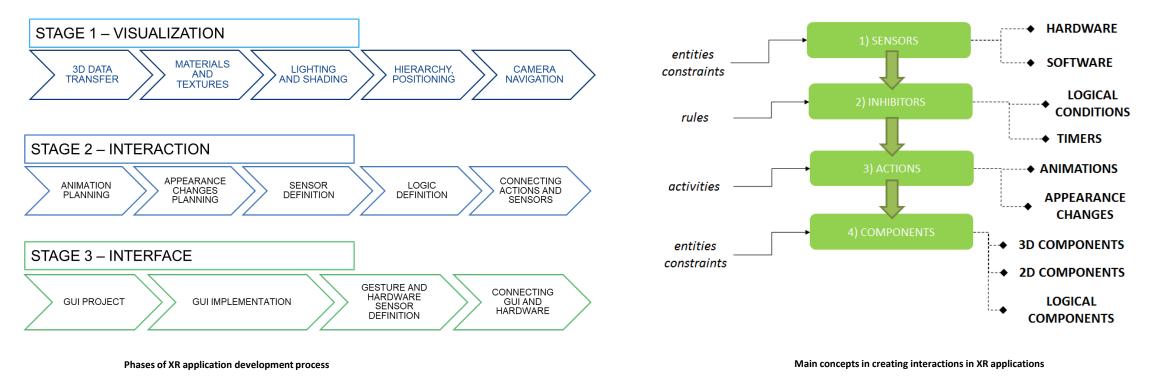
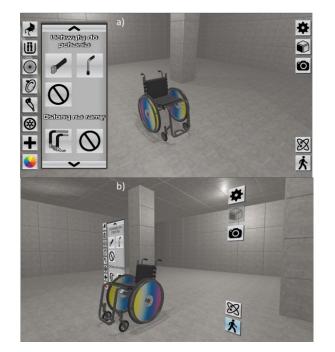

Levels of XR applications and mapping to specific user classes [Górski et al. 2017]

Table 3.1. Requirements of applications of different knowledge levels [Górski et al. 2017]

Features/requirements	Level 1	Level 2	Level 3
Visualization	Static – pre-rendering	Kinematic – real-time	Dynamic – real-time
	(possible static images	rendering (3D engine,	rendering with object
	and pre-rendered	live animation)	deformations
	sequences)		
Human tissue data	Illustrative (3D	Selected cases	Real data (data from
form	modeled by graphic	(modeled on the basis	CT scans or other
	designer with no	of pre-selected patient	medical imaging,
	medical imaging)	data from medical	processed for better
		imaging)	visualization)
Animations	Simple, pre-rendered	Rigid bodies – real-	Both rigid and
		time, deformations –	deformable bodies in
		pre-rendered	real time
Object manipulation	Mouse, keyboard,	Graphical user	Graphical user
and interaction	graphical user	interface, gestures,	interface, gestures,
methods	interface, gestures	tracking	tracking, haptic
			manipulation with
			force feedback
Collisions and force	Unnecessary	Beneficial	Mandatory if no
feedback			physical props
Full immersion (HMD)	Beneficial	Needed but not	Mandatory if no
		mandatory	physical props
Required tracking and	Low or N/A	medium/low	high
force accuracy			
Required computing	low/medium	medium/high	high
power			
Participation of	Planning stage -	Planning and building	Planning, building and
specialists - medical	definition of	stage – sharing	verification –
doctors	requirements	procedural knowledge	recording of
			procedure



Building medical VR/AR applications



Examples of VR/AR applications for medicine and biomedical engineering

Application - wheelchair configurator [Myślewska 2017]

Wheelchair configurator – standard and immersive mode

Iceland Liechtenstein Norway grants

Working together for a green, competitive and inclusive Europe

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

Fear of heights therapy

Fear of heights therapy - ground view [Połczyńska 2020]

Fear of heights therapy – top view [Połczyńska 2020]

Test user making the "swallow" posture [Połczyńska 2020]

Summary

In this course module, basic information about virtual, augmented and mixed reality techniques were presented. The reader was familiarized with basic concepts and definitions, XR system structure and possible components, as well as applications. Also, a methodology of building XR applications was presented, in form of a development process proposal and description of its particular stages, illustrated with examples of specific applications. Below, effects that should be achieved after familiarizing with the chapter are specified.

- 1. Reader is able to define, distinguish and classify concepts of Virtual Reality, Augmented and Mixed Reality.
- 2. Reader has knowledge about Virtual, Augmented and Mixed Reality systems: projection, tracking, gesture recognition and haptics, as well as available software classes for XR application creation.
- 3. Reader should know about possibilities and examples of application of Virtual Reality systems in product lifecycle for medicine and biomedical engineering.
- 4. Reader should know how to design an interactive VR application for presentation of properties of a specific product, activity or workplace.

