

Working together for a green, competitive and inclusive Europe

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

Intellectual Output_01: EMERALD e-book for developing of biomimetic mechatronic systems

MODULE 8 Intelligent (Smart) Materials

Diana BĂILĂ,

Polytechnic University of Bucharest | UPB

diana.baila@cont-edu.pub.ro

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS MODULE 8.1 Intelligent (Smart) Materials

Project Title	European network for 3D printing of biomimetic mechatronic systems 21-COP-0019
Output	IO1 - EMERALD e-book for developing of biomimetic mechatronic systems
Module	Module 8.1 Intelligent (Smart) Materials
Date of Delivery	July 2022
Authors	Diana BĂILĂ
Version	FINAL VARIANT

Table of contents

1	Introd	uction in Additive Manufacturing technologies	3.
	1.1	The Principle of Additive Manufacturing Technologies	3.
	1.2	Classification of additive manufacturing technologies according to the materials used	4.
2	Plastic	materials used in Additive Manufacturing	6.
3	Photo	polimerizable resins used in Additive Manufacturing	8.
4	Metal	lic powders used in Additive Laser Manufacturing	11.
	4.1	Laser types used in Additive Manufacturing	27.
	4.2	Metallic powders and filaments used in Laser Metal Deposition and Direct Metal Deposition	32.
	4.3	Architectural materials manufactured by SLM	35.
5	Refere	ences	38.
6	Figure	references	43.

Introduction in Additive Manufacturing technologies

Additive Prototyping Technologies (AM) differ fundamentally from material removal processing technologies (cutting, EDM, laser processing) and redistribution processing technologies material (casting, injection, forging, stamping) by the fact that the parts are obtained by adding layer by layer material using a CAD file.

These technologies have emerged grace a result of the achievements and advances made in the field of fine mechanics, numerical control, laser technology, computers, software, and the new materials development.

These new Additive Manufacturing technologies have started to grow in importance due to the efforts of manufacturers to reduce design times up to marketing, as well as the costs of assimilating and manufacturing new products.

Table 1. The mechanical properties of Acrylonitrile Butadiene Styrene (ABS)

Properties	Values	Units
Density	1.0-1.4	g/cm3
Poisson's Ratio	0.35	-
Shear Modulus G	1,03-1,07	GRa.
Melting Temperature	200	20
Glass transition temperature	105	20
Thermal Conductivity	0,25	W/m-K
Extruded Temperature	200-230	20
Heat Deflection Temperature, 1,81 MPa	81	20
Young's modulus	1,79-3,2	GP3.
Tensile Strength	29,8-43	MPa
Compressive Strength	76-78	MPa
Elongation at Break	10-50	%
Flexural modulus	2,1-7,6	GRa.
Hardness Shore D	100	
Izod Impact Strength	58	kJ/m2
Yield Strength	28-120	MPa
Standard Tolerance	+/-0.05	mm
Biodegradable	-	-
Melt flow	12-23	g/10min
Rockwell Hardness	R102-R104	

Classification of additive manufacturing technologies according to the materials used

No	Mechanical and chemical properties	U.M.	Value (unit)	Obs.
1	Density	g/cm ³	1.455 – cristalin	1.38 - at 20°C
			1.37 - amorphous	
2	Tensile Strength	N/mm ²	74-cristalin	-
			55-amorphous	
3	Compressive Strength	N/mm ²	125	-
4	Flexural strength	N/mm ²	90	-
5	Torsion strength	N/mm ²	-	-
6	Shear strength	N/mm ²	-	-
7	Elongation at break	%	50-cristalin	-
			150-300 - amorphous	
8	Ball penetration hardness	Kg/m^3	1370	-
9	Rockwell Hardness	-	R100-cristalin	-
			R90-amorphous	
10	Charpy shock resistant (uncracked)	kJ/m^2	3.6	-
11	Charpy shock resistant (cracked)	kJ/m^2	2.5	-
12	Melting temperature	°C	260	-
13	Glass transition temperature	°C	67-81	-
14	Notch test	kJ/m^2	3.6	-
15	Vicat Temperature(VST)	°C	82	-
16	Extruded temperature	°C	220-250	-
17	Liniar expansion coefficient	-	7	(*10 ⁻³ K ⁻¹)
18	Specific Heat	cal/g°C	0.28	(JK ⁻¹ •kg ⁻¹)
19	Thermal conductivity	W/mK	0.15-0.24	-
20	Boiling point	°C	350	-
21	Volume resistivity	Ω*cm	4*10 ¹⁶ – cristalin	-
			2*1016 - amorphous	
22	Surface resistivity	Ω	1013	-
23	Water absorption (ASTM)	%	0.5-0.6 - cristalin	/24h
			0.6-0.7 -amorphous	
24	Viscosity	cP	75000-90000	Low-
				viscosity PET
				at high-
				viscosity PET
25	Dielectric rigidity	kV/mm	16	-
26	Melt flow	g/10min	35,08	230°C
27	Young's Modulus (E)	MPa	2800-3100	-
28	IZOD Impact strength	J/m2	140	-

Table 2. The mechanical properties of Polyethylene Terephthalate PET (C10H8O4)n

Table 3. The mechanical properties of PLA (Polylactic Acid)

Properties	Values	Units
Density	1.25	g/cm3
Poisson's Ratio	0.36	-
Shear Modulus G	2.4	GRa.
Melting Temperature	173	<u>,</u>
Glass transition temperature	60	sc.
Thermal Conductivity	0.13	W/m-K
Extruded Temperature	160-220	sc.
Heat Resistance	110	sc.
Young's modulus	3.5	GRa.
Tensile Strength	61.5	MPa
Compressive Strength	93.8	MPa
Elongation at Break	6	%
Flexural strength	88.8	MPa
Hardness Shore D	85	A
Impact Strength	30.8	kJ/m2
Yield Strength	60	MPa
Standard Tolerance	+/-0.05	mm
Biodegradable	yes	-

Table 4. Comparison concerning mechanical properties between the common materials used

	in FDM t								
Polymare	HIPS			ABS			PLA		
rotymers	ov	SD	SEx	ov	SD	SEx	ov	SD	SEx
MFI (g/10 min)	7.5 ± 0.20	0.16	0.11	8.76 ± 0.16	0.13	0.09	13.52 ± 0.11	0.09	0.06
Young's modulus (MPa)	112.5 ± 0.12	0.09	0.06	175 ± 0.11	0.09	0.06	47.9 ± 0.10	0.08	0.05
Yield stress (MPa)	3.44 ± 0.21	0.17	0.12	0.49 ± 0.21	0.17	0.12	0.27 ± 0.16	0.13	0.09
Glass transition temp (°C)	100.41 ± 0.16	0.13	0.09	109.76 ± 0.2	0.16	0.11	62.57 ± 0.21	0.17	0.12
Peak load (N)	80.8 ± 0.11	0.08	0.06	207 ± 0.2	0.16	0.11	282.4 ± 0.20	0.16	0.11
Peak strength (MPa)	4.21 ± 0.16	0.13	0.09	10.78 ± 0.11	0.09	0.06	14.71 ± 0.16	0.13	0.09
Peak elongation (mm)	1.9 ± 0.20	0.16	0.11	4.75 ± 0.16	0.13	0.09	5.13 ± 0.16	0.13	0.09
Percentage elongation at peak (%)	3.0 ± 0.11	0.09	0.06	6.0 ± 0.15	0.12	0.08	7.0 ± 0.10	0.08	0.05

Transparent resins used in dental domain manufactured by SLA

The principle of manufacturing for both technologies: SLA and DLP

Industrial & Business Machines 11,0%

Others

5.0%

Motor Vehicules

20,0%

Aerospace

12,0% Government 8 Military 6.0%

Architectural

3,0%

Consumer products & Electronics 20,0%

Academic Institutions 8.0%

Medical & dental

15,0%

Anisotropy of the microstructure of parts built by SLM

Comparison between the Additive Laser Technologies

AM Powder Powder Type

 Table 5. The mechanical properties of Bisphenol A Ethoxylate Diacrylate

 O

Bisphenol A Ethoxylate Diacrylate

n+m~4

INTRODUCTION		VALU
EBECRYL 150 is an ethoxylated bisphenol A diacrylate commonly used as reactive	Acid value, mg KOH/g, max.	
diluent in UV/EB cure applications. EBECRYL 150 can improve the cure response,	Appearance	Clear liqui
hardness, and chemical resistance of UV/EB curable coatings and inks while	Color, Gardner scale, max.	
maintaining good adhesion, and without imparting brittleness.	Viscosity, 25°C, cP/mPa·s	1150-165
PERFORMANCE HIGHLIGHTS	TYPICAL PHYSICAL PROPERTIES	
EBECRYL 150 is characterized by:	Density, g/ml at 25°C	1.1
High reactivity	Flash point, Setaflash, *C	>10
 Moderate viscosity 	Functionality, theoretical	
High refractive index	Refractive index (n _p at 20°C)	1.529
	Vapor pressure, mm Hg at 20°C	<0.0
UV/EB curable formulated products containing EBECRYL 150 are characterized		
by:	TYPICAL CURED PROPERTIES	
 Hardness 	Tensile strength, psi (MPa)	6300 (43
Chemical resistance	Elongation at break, %	
 Good adhesion 	Young's modulus, psi (MPa)	180000 (1241
 Improved wetting 	Glass transition temperature, *C ⁽³⁾	4

The actual properties of UV/EB cured products also depend on the selection of other formulation components such as oligomers, additives and photoinitiators.

		-	•		1	1	
characteristics				Standard	Standard	Standard	
Size and shape	Metallic powders	Φ [µm]	SEM	B822	13322	-	
Specific density	Metallic powders	ρ _{specific}	Gas pycnometer	B293	12154	-	
		[g/cm ³]					
Apparent density	Non-free flowing metallic	Que [g/cm ³]	Hall apparatus	B212	3923/1	3923	
	powders						
Apparent density	Non-free flowing metallic	Q _{vv} [g/cm ³]	Carney apparatus	B417	3923/1,	4490	
	powders				4490		
Apparent density	Metallic powders	Que [g/cm ³]	Arnold meter	B703	-	-	
Apparent density	Refractory metals and	Q _{we} [g/cm ³]	Scott volumeter	B329	3923/2	-	
	compounds						
Tap density	Metallic powders	Burni	BT-1000	B527	3953	3953	
		[g/cm ³]					
Average particle size	Metallic powders	d _{so}	Fisher sub-sieve	B330, C72	10070	-	
			sizer				
Powder sieve	Metallic powders	-	Sieve analysis	B214	4497,2591	24497	
analysis			equipment				
			Westmoreland				
Particle size	Metallic powders and	d_{10}, d_{60}, d_{90}	Light scattering	B822	13320,	-	
distribution	related compounds				24370		
Flowing rate	Free-flowing metallic	Flow time	Hall apparatus	B213	4490	4490	
	powders	(s) for 50g					
Envelope specific	Powder bed under steady	S. [m ² /g]	Measurement of	-	10070	196-6	
surface	flow		air permeability				

This results was realised with the EEA Financial Mechanism 2014-2021 financial support. Its content (text, photos, videos) does not reflect the official opinion of the Programme Operator, the National Contact Point and the Financial Mechanism Office. Responsibility for the information and views expressed therein lies entirely with the author(s)

Table 6. Standards (ASTM, ISO, EN) for powder properties used in additive manufacturing [86]

Symbols Techniques ASMT ISO EN

The Co-Cr alloy powder (ST2724G) used for DMLS manufacturing presents the chemical composition: 54.31 %Co; 23.08%Cr; 11.12% Mo, 7.85% W, 3.35% Si, and Mn, Fe < 0.1%.

Ti6Al4V powder obtained by hydride-dehydride

Compact and irregular Ti6Al4V grains

Table 7. Mechanical characteristics of Co-Cr powder

Minimum layer thickness	20 μm
Surface roughness	Ra=10 µm, Ry=40-50 µm
	Ra=0,39 μm, Rz=1,6 μm
	After polishing Rz<1 µm
Density with standard parameters	8,3 g/cm ³
Mechanical p	roperties
Tensile strength	1100MPa
Yield strength	600 MPa
Elongation at break	20%
Young's modulus	200 GPa
Hardness	35-35 HRC
Fatigue life	>10 million cycles
Thermal pro	perties
Maximum operating temperature	1150 °C

Working together for a green, competitive and inclusive Europe

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

EDAX analysis of Co-Cr alloy powder

Analogue dental implants manufactured by DMLS

The platen of sintering machine

 powder grains
 porosity

 7/18/2019
 HV 30 00 kV
 spott
 mag
 WD 9 49 56 AM
 HFW 30 00 kV
 20 µm

SEM analysis of a) Co-Cr powder;

b) DMLS sintered structure

Working together for a green, competitive and inclusive Europe

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

This results was realised with the EEA Financial Mechanism 2014-2021 financial support. Its content (text, photos, videos) does not reflect the official opinion of the Programme Operator, the National Contact Point and the Financial Mechanism Office. Responsibility for the information and views expressed therein lies entirely with the author(s)

bizzzcom

Laser types used in Additive Manufacturing

Phenix Systems - PM100 system

TrumaForm LF250 system

Laser beam profiles Nd:YAG:.a) Gaussian beam; b) Multimode beam;

c)flat-top (top-hat) beam

Trabecular Lattice structures for enhanced osseointegration

Acetabular cups, manufactured by EBM technology, for hip replacements, with trabecular structure, Courtesy Accam

Metallic powders and filaments used in Laser Metal Deposition and Direct Metal Deposition

Microstructure after: a)LMD process and b)welding TIG

Geometry resulting from LMD process and TIG welding

ZAT after: a)LMD process and b)welding TIG

Evolution of the microhardness as a function of the distance to the hardened zone for an Inconel 625 coating added by laser or $\underline{\text{TIG}}$

Table 8 SLM processing parameters

Architectural materials manufactured by SLM

Strut-based lattice structures: <u>BCC</u> (A), BCCZ (B), <u>FCC</u> (C), FCCZ (D), cubic (E), Octettruss (F), and diamond (G)

Machine	Manufacturer	Material	Spot size (µm)	Border power (W) ^a	Hatch power (W)	Scan speed (mm/s)	Hatch spacing (mm)	Layer thickness (µm)	Mean powder size (µm)
ProX DMP 300	3D Systems	Ti-6Al-4V	_	_	_	_	_	_	8.64
ProX-300	3D Systems	SS 630 (17- 4PH)	70	170	170	1600	0.05	40	_
Concept X-line 1000R	Concept Laser Company	AlSi10Mg	_	_	370	1500	0.19	30	31
M2 Cusing®	Concept Laser Company	Ti-6Al-4V	60	150	150	1750	0.075	20	20-50
EOSINT-M270	EOS	Ti-6Al-4V	100	58.5	117	225	0.18	30	45
M280	EOS	316L SS	100	_	_	_	_	_	20-40
DMLSEOSINT-	EOS	Ti-6Al-4V	100	170	170	1250	0.06	30	20
M270									
M 270	EOS	Ti-6Al-4V	100	170	170	1250	0.1	30	29
M 270	EOS	Ti-6Al-4V	10	117	117	225	0.18	30	-
M280	EOS	AlSi10Mg	_	370	370	1500	0.13	30	30
Realizer II	MCP	316L SS	90	80-160	80-160	_	_	_	16-38
MCP Realizer 2,	MCP	Ti-6Al-4V	54	80	80	_	_	50	45
250 SLM									
Realizer SLM	MCP	316L SS	40	95	95	_	0.075	75	45
Workstation									
AM250	Renishaw	AlSi10Mg	80	200	200	_	0.13	25	-
AM250	Renishaw	Ti-6Al-4V	_	100	200	_	0.065	30	-
AM250	Renishaw	AlSi10Mg	70	_	_	_	_	25	-
SLM 125	SLM Solutions	CP-Ti	_	100	100	385	0.12	_	36.6
SLM250HL	SLM Solutions	Ti-6Al-4V	_	100	100	375	0.12	30	40

This results was realised with the EEA Financial Mechanism 2014-2021 financial support. Its content (text, photos, videos) does not reflect the official opinion of the Programme Operator, the National Contact Point and the Financial Mechanism Office. Responsibility for the information and views expressed therein lies entirely with the author(s)

C

