Iceland Liechtenstein Norway grants

Working together for a green, competitive and inclusive Europe

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

Intellectual Output_O2: EMERALD e-toolkit manual for digital learning in producing biomimetic mechatronic systems Toolkit 3 3D Printing

Diana BĂILĂ,

Polytechnic University of Bucharest | UPB

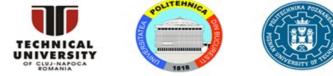
diana.baila@cont-edu.pub.ro

1

2

3

4


5

MECHATRONIC SYSTEMS

E-toolkit – 3D Printing

Project Title	European network for 3D printing of biomimetic mechatronic systems 21-COP-0019
Output	IO2 - EMERALD e-toolkit manual for digital learning in producing biomimetic manufacturing method
Module	3D Printing
Date of Delivery	January 2023
Authors	Diana BĂILĂ
Version	FINAL VARIANT, *24.01.2023*

		https://project-emerald.eu	
Pro	duct 1: Personalized Ort	hosis	
1.1	CAD Modeling		3.
1.2	STL file		5.
1.3	3D Printing software's		6.
Pro	duct 2: Robotic Arm		
2.1	CAD Modeling		16.
2.2	STL file		
2.3	3D Printing software's	5	19.
Pro	duct 3: 3D Fresh Printing	g of organ phantom for surgical applications	
3.1	CAD Modeling		27.
3.2	STL file		28.
3.3	3D Printing software's	5	29.
Con	clusions		38.
Ref	erences		39.

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

1. 3D Printing toolkit for medical applications

Product 1: Personalized Orthosis – SLDPRT. file Poznan University of Technology Partner

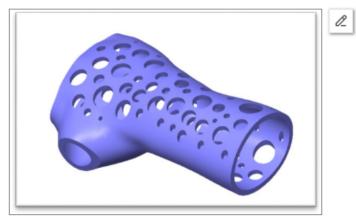


Fig.1. Personalised orthosis

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

1.1. CAD Modeling

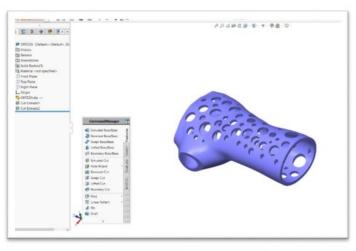


Fig.2. SolidWorks - SLDPRT. file

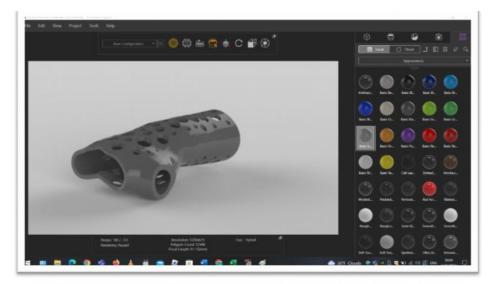


Fig.3. SolidWorks Visualize 2019 - orthosis with different texture mapping

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

1.2. STL File

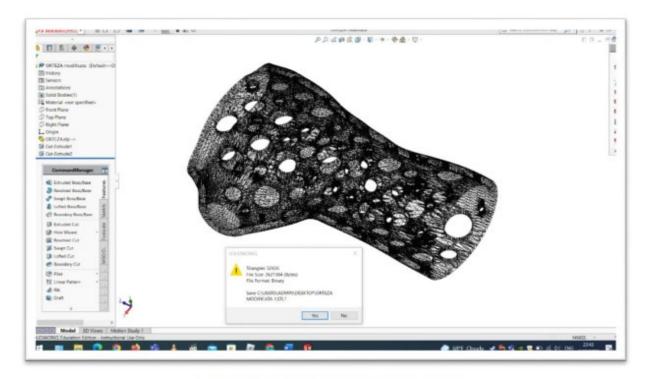


Fig.4.Orthosis meshing - STL. file

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

1.3. 3D Printing software's

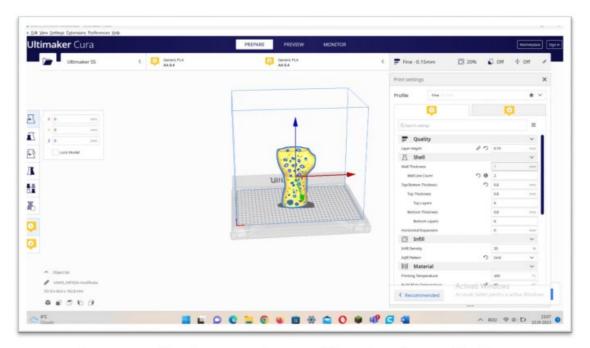


Fig.5. Open Ultimaker Cura software and introduce the STL. file of part

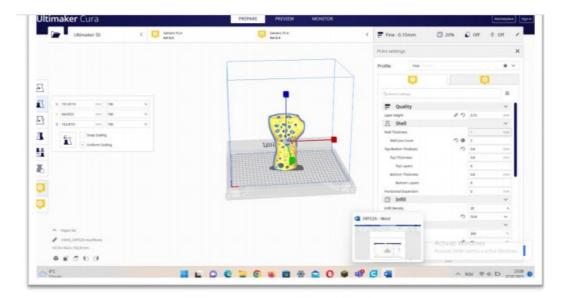


Fig.6. Change the part scale, after X, Y, Z axis

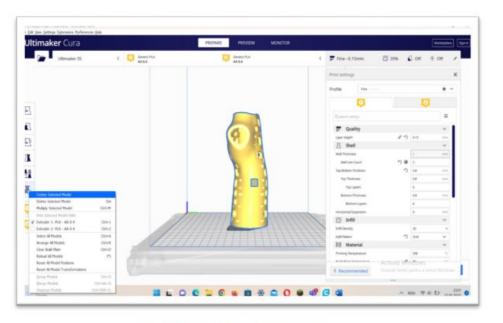
EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

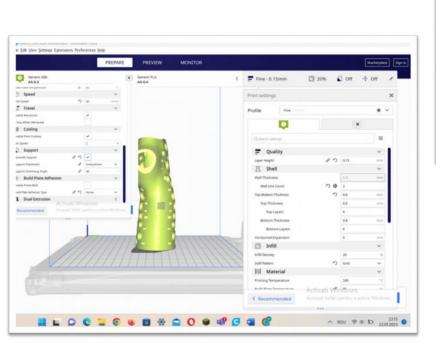
maker Cura	PREPARE PREVIEW MONITOR			Marketplace
Uttimaker 55 C 🚺 Geren	PLA 🔯 Generic PLA AA E.4	🤇 🕊 Fine-0.15mm	🖸 20% 🚨 OF	+ on +
		Print settings		,
		Profile Fire		* ~
			0	
		Q Servit comp		=
		T Quality		~
		Layer Height	19 45	-
622		月 Shell		~
	60	mail This near		-
🖌 Snap Rotation		Mail Line Dane	202	
	un	Nacional Stations	17 iai	1.1
		Top Thickness	1.4	100
		Tay Laws		
		Botton Technett	0.8	
		Bottom Lapers		
		Horizontal Expension		1995
		E Intel		~
		and benalty		
		2/M Patters	O Grid	÷
		III Material		~
 Otycie 		Printing Temperature	200	10
 VPED_ORTED-instituta 		Build Date Transmission	Activati Windows	-
101.8 × 84.0 x 342.8 mm		C Recommended		
88568				

Fig.7. Rotation of the part after X, Y, Z axis

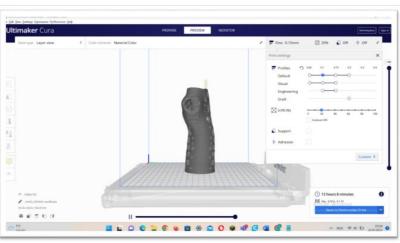
Properties	Values	Units
Density	1.0-1.4	g/cm3
Poisson's Ratio	0.35	-
Shear Modulus G	1,03-1,07	GPa
Melting Temperature	200	°C
Glass transition temperature	105	°C
Thermal Conductivity	0,25	W/m-K
Extruded Temperature	200-230	°C
Heat Deflection Temperature, 1,81 MPa	81	°C
Young's modulus	1,79-3,2	GPa
Tensile Strength	29,8-43	MPa
Compressive Strength	76-78	MPa
Elongation at Break	10-50	%
Flexural modulus	2,1-7,6	GPa
Hardness Shore D	100	
Izod Impact Strength	58	kJ/m2
Yield Strength	28-120	MPa
Standard Tolerance	+/-0.05	mm
Biodegradable	-	-
Melt flow	12-23	g/10min
Rockwell Hardness	R102-R104	

Table 1. The mechanical properties of Acrylonitrile Butadiene Styrene (ABS)




Fig 8. 3D Printing Extruder chosen

ltimaker Cura				PRIPARI	PREVEN	MONITOR						Marketpla	
Uttimaker SS	٤	Constitute An E-A		18	Generic PLA. AA 64		w	Fine-0.15	imm	[] 20%	i or	+ 07	1
				Custom				Print settings					ж
			Ø 14	card of King changes			1	Profile	104				1
			Yes	have customated same pro-	le untrus.			Prone				*	~
			Wee	All you like to Kney these ch ruthwiy, you can discard th	anged settings also				•			×	
				k settep.	Pee	Careet charges.							
			1	d Plate Adhesion all Plate Adhesion Type	large .	new							
				dity per regit	4.1	0.03		🐺 Qual	ity				
			Def:		tunits	ant		Laper Harple			2 219		н
			She			-		E Shell				*	
			-	ig/Battore Theleress (Estr.	1.2	0.8		mail Theorem			-03	100	1
				et Speed (Estraler 1)	35	60		Ref Line 1			8 2 0 08		
								The factor			14		I.
								Tele					L
								Acres 1			-		ь
				en al re fit				and a	-Lawers				
								Perintenal De					
						Grep changes Decard chang	n ()	(3 MI					
			Pro		and the second version of		-8	interimute.			20		
		1						200 Pattern		1	9 104		
		11	111				12.	III Mate	erial			~	
A Deriv								Promp lang	and an		240		
 IMUL (MED) multiple IMUL (MED) me 								British Street Ter		Activity V	friðbre	1.00	
								< Recomm	ended				
0 0 0 0 0 0										200			


Fig.9. Choosing the ABS filament for 3D Printing

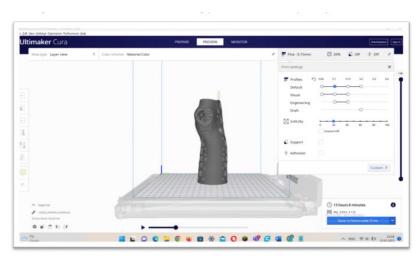


Fig.12. Preview the manufacturing 3D Printing process

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

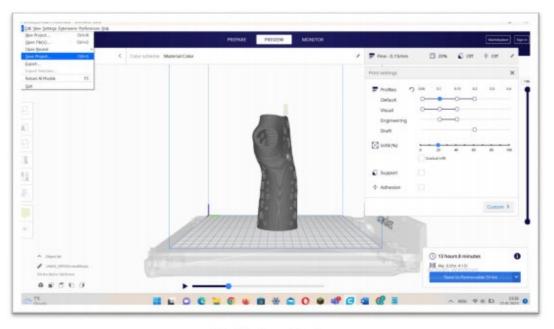


Fig.13. Save Project

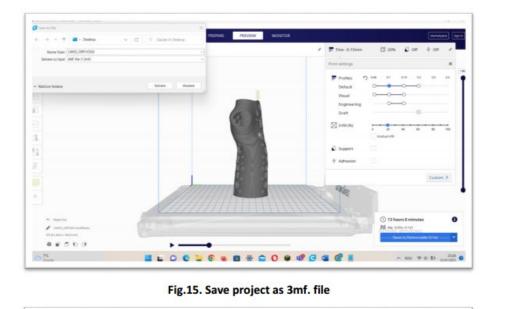



Fig.14. Summary- Cura Project

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD



Fig.16. Export file

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

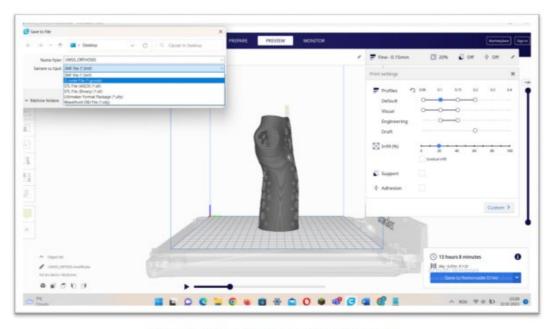


Fig.17. Different extension for file export

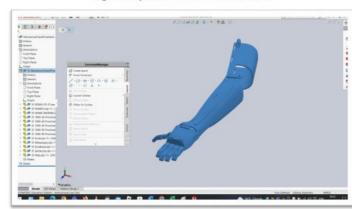
Fig.18. G-code file for personalized orthosis part

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

Fig.19. Personalized Orthosis printed by FDM technology

Product 2: Robotic Arm – ASM, SLDASM. file Poznan University of Technology Partner

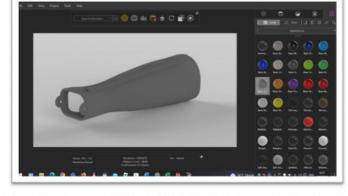
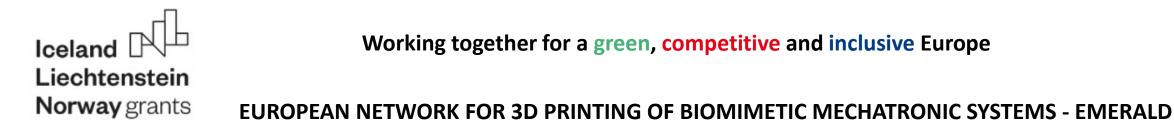
Iceland Liechtenstein


Working together for a green, competitive and inclusive Europe

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

2.1 CAD Modeling

Fig.20. Exploded View - Robotic Arm

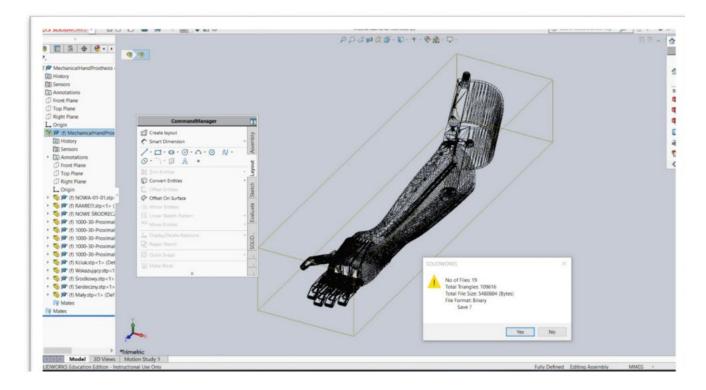

Fig.22. SolidWorks Visualize 2019 - robotic arm with different texture mapping

Fig.21. Robotic arm assembly – ASM, SLDASM. File

2.2. STL file

2.3. 3D Printing software's

Table 2. The mechanical p	properties of PLA	(Polylactic Acid)
---------------------------	-------------------	-------------------

Properties	Values	Units
Density	1.25	g/cm3
Poisson's Ratio	0.36	-
Shear Modulus G	2.4	GPa
Melting Temperature	173	°C
Glass transition temperature	60	°C
Thermal Conductivity	0.13	W/m-K
Extruded Temperature	160-220	°C
Heat Resistance	110	°C
Young's modulus	3.5	GPa
Tensile Strength	61.5	MPa
Compressive Strength	93.8	MPa
Elongation at Break	6	%
Flexural strength	88.8	MPa
Hardness Shore D	85	Α
Impact Strength	30.8	kJ/m2
Yield Strength	60	MPa
Standard Tolerance	+/-0.05	mm
Biodegradable	yes	-

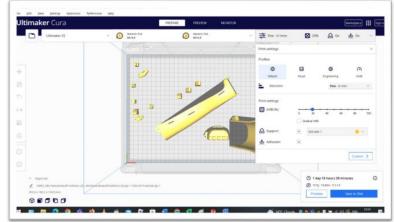
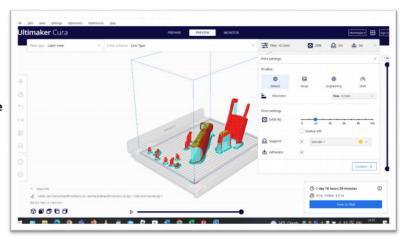



Fig.28. Recommended manufacturing parameters for the part by the software

Fig.29. Preview the manufacturing 3D Printing process

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

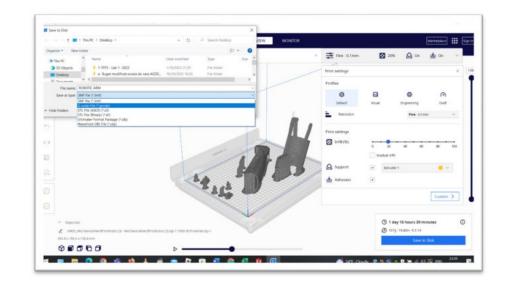


Fig.32. Different extensions for file export

a 101 Format New Years		
TART_OF HEADEN		
8A065_VER530010.1		
Lacorder(FF)a		
ENERATOR, NAME: Corra: StramBingIner		
EMERATOR, VERSION: main		
ENERATOR.BUILD DATE:3822-09-13		
AAGET MACHINE.NAMEILITIMAKWY 65		
STRIER TRADE. 0. DETTINI TEMPERATURE : 300		
STRUCES TRADE, D. ANTPRIAL, VOLUME USED 126418		
RTHUDER THAIN, 0. MATCHIAL, GUIDISMO: SFMd etam. Abd4 63d2 23e2425bland		
NTRIDER TRAIN, 0. NUTTI C. DIANCTER-0, 4		
XTRUDER TRAIN, O. NUZZLE, NAME: AA. Ø. S		
ULD PLATE.TVPE:glass		
DOLD PLATE.INITIAL TEMPERATURE INF		
LICLE VOLUME THERE IS		
8187.1196(155555		
82NT.GROUPS-1		
9287,5222,H19,8-5,648		
9287.5222.0039.Y239.009		
9287, 5225, 908, 218, 2		
8187 N278-7868, 81987, 587		
8151.5174.988.Y1228.122		
8587.5127.988.712.00.0		
NO OF NEADER		
energied with thru Steamingine main		
2 jabealute extrusion mode		
3 10		
85 5288		
Re SL		
220.001		
F2700 E-6.5		
AVER_COUNT: 1 REP		
ANTICLE .		
85		
04 51899		
85 K28 129		
F500 22.2		
F1285.7 X227.193 V82.06 22.2		
8223.256 Y84.153		
YPS:IAIGT		
		10% Western CRU UT-4
	in 1, Cal 1	
		20 10 10 10 10 10 10 10 10 10 10 10 10 10

Fig.33. G-code file for Robotic Arm

Fig.34. Robotic Arm printed by FDM technology and assembled

Product 3: 3D Fresh Printing of organ phantom for surgical applications – site <u>https://www.embodi3d.com/</u>

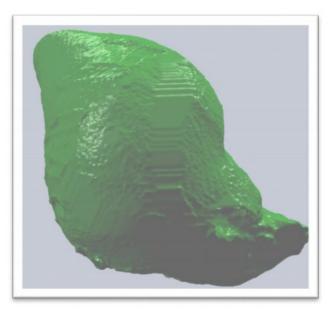
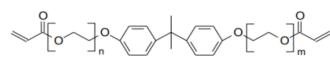



Fig.35. Liver model for printing

Table 3. The mechanical properties of Bisphenol A Ethoxylate Diacrylate

INTRODUCTION	SPECIFICATIONS ⁽³⁾
EBECRYL 150 is an ethoxylated bisphenol A diacrylate commonly used as reactive diluent in UV/EB cure applications. EBECRYL 150 can improve the cure response, hardness, and chemical resistance of UV/EB curable coatings and inks while maintaining good adhesion, and without imparting brittleness.	Acid value, mg KOH/g, max. Appearance Color, Gardner scale, max. Viscosity, 25°C, cP/mPa-s
PERFORMANCE HIGHLIGHTS	TYPICAL PHYSICAL PROPE
EBECRYL 150 is characterized by:	Density, g/ml at 25°C

- High reactivity Moderate viscosity
- High refractive index

UV/EB curable formulated products containing EBECRYL 150 are characterized

Bisphenol A Ethoxylate Diacrylate

- by:
- Hardness
- Chemical resistance Good adhesion
- Improved wetting

The actual properties of UV/EB cured products also depend on the selection of other formulation components such as oligomers, additives and photoinitiators.

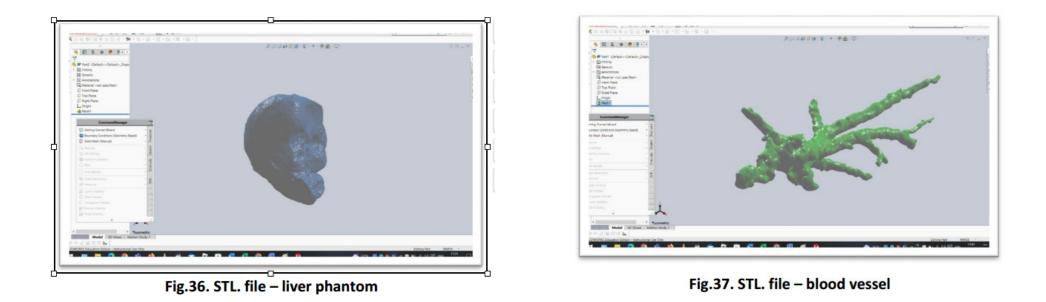
VALUE
5
Clear liquid
2
1150-1650

PERTIES

Density, g/ml at 25°C	1.14
Flash point, Setaflash, *C	>100
Functionality, theoretical	2
Refractive index (np at 20°C)	1.5294
Vapor pressure, mm Hg at 20°C	<0.01

TYPICAL CURED PROPERTIES[©]

Tensile strength, psi (MPa)	6300 (43)
Elongation at break, %	9
Young's modulus, psi (MPa)	180000 (1241)
Glass transition temperature, °C ⁽³⁾	41



^S EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

3.1. CAD Modeling

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

3.2. STL file

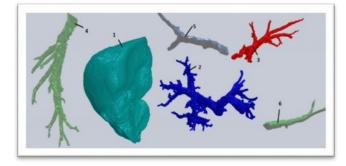
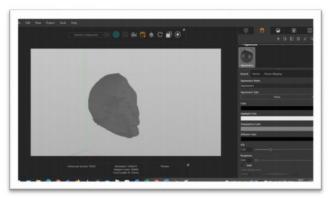
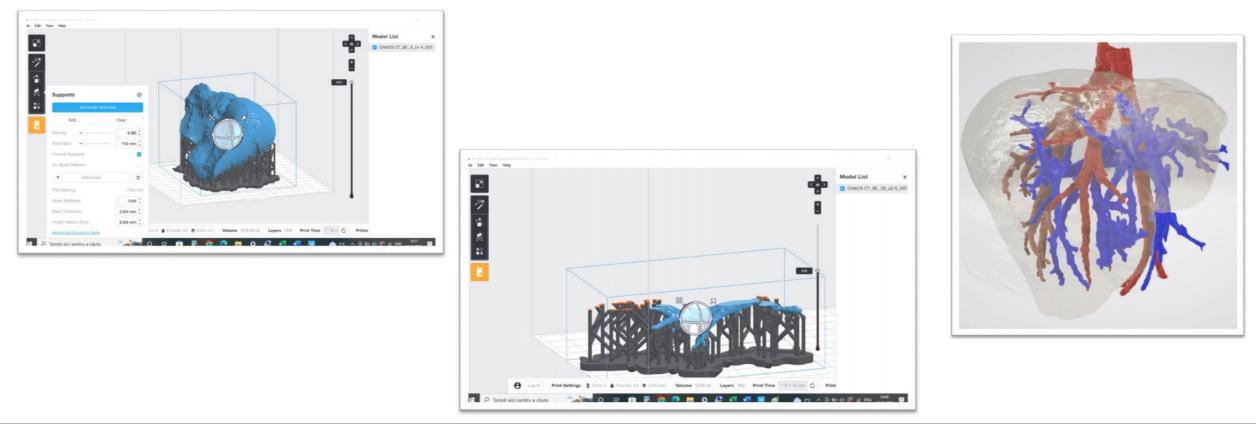


Fig.38. Exploded View – Liver phantom




Fig.39. SolidWorks Visualize 2019 – Liver phantom with different texture mapping

S EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS - EMERALD

3.3. 3D Printing software's

4. Conclusions

In the future, further research on both multi-material and multi-colour prototypes could be performed, focusing on additive manufacturing technologies based on different silicones and plastic materials with different colours, necessary for different medical prothesis and devices.

The use of different silicones would be interesting in order to manufacture more complex phantoms, in which not only the desired organ is 3D printed, but also the surrounding anatomical structures. For example, the tumour or blood vessels by changing the component ratios.

The implications of the present research would be interesting for the manufacture of phantoms to be used in research and industry: medical imaging, preoperative surgical planning in hospitals, etc.

