Top Research Center in Mechatronics, Cobote Biomechatronics
Collaborative robots (cobots)

EMERALD kick-off meeting

Filippo Sanfilippo¹

¹Dept. of Engineering Science, Faculty of Engineering and Science, University of Agder (UiA), Campus Grimstad, Jon Lilletuns vei 9, 4879, Grimstad, Norway, filippo.sanfilippo@uia.no

EMERALD kick-off meeting

Top Research Center in Mechatronics, Coboter

- Dr. Filippo sanfilippo
 - Professor at the Dept. of Eng. Sciences, Faculty of Eng. and Science, University of Agder (UiA)
- Top Research Center in Mechatronics (TRCM)
 - Collaborative Robots (Cobots)
- Centre for Integrated Emergency Mangement (CIEM)
 - Technologies for Augmenting Response Capabilities in Emergency Management Operations
- Research team
 - Student projects/theses (BSc/MSc)
- PhDs and PostDocs supervision
 - PhD stipendiat, Saishashank BALAJI
 - PhD stipendiat, Hareesh Chitikena
 - PhD stipendiat, Hua Minh Tuan
 - 1 PhD, to be hired
- Chair of IEEE Norway Section
- Chair of Robotics & Automation, Control Systems & Intelligent Transportation Systems Joint Chapter
- Treasure of Norsk Forening for Kunstig Intelligens (NAIS).

Biomechatronics

Collaborative robots (cobots)

Collaborative robots (cobots):

 robots intended for direct human robot interaction within a shared space, or where humans and robots are in close proximity.

Challenges:

- cobots are advancing from being simple stand-alone manipulators to becoming autonomous co-workers;
- extend robot capabilities in sensing human motions and behaviour;
- how robustly we can measure and predict human motions and intentions.
- ⇒ trade-off between control and mechanical/software design

[1]

[1] Filippo Sanfilippo, Houxiang Zhang, and Kristin Ytterstad Pettersen. "The New Architecture of ModGrasp for Mind-Controlled Low-Cost Sensorised Modular Hands". In: *Proc. of the IEEE International Conference on Industrial Technology (ICIT2015), Seville, Spain.* 2015, pp. 524–529.

Bio-inspired robotic hands and modular grasping

Bio-mechatronics course at UiA

Mimicking the human hand's ability, one of the most challenging problem in bio-inspired robotics:

• large gap in terms of performances.

Classical approach, analysis of the kinematic behavior of the human hand:

• simplified human hand models with minimum and optimal degrees of freedom^[2].

Modular grasping, a promising solution:

• minimum number of degrees of freedom necessary to accomplish the desired task.

^[2] S. Cobos, M. Ferre, and R. Aracil. "Simplified human hand models based on grasping analysis". In: *Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*. 2010, pp. 610–615.

Modular grasping

- A trade off between a simple gripper and more complex human like manipulators.
- *Principle of minimalism*: choose the simplest mechanical structure, the minimum number of actuators, the simplest set of sensors, etc.

Modular grasping:

• identical modules are used to build linkages to realise the grasping functions. The modular grasping meets the requirements of standardisation, modularisation, extendibility and low cost^[3].

[3] Filippo Sanfilippo et al. "Efficient modular grasping: an iterative approach". In: *Proc. of the 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy.* 2012, pp. 1281–1286.

ModGrasp: a rapid-prototyping framework for designing modular hands

ModGrasp:

- Modular Mechanics;
- Modular Hardware;
- Modular Software.

ModGrasp, a rapid-prototyping framework for low-cost sensorised modular hands:

- real-time one-to-one correspondence between virtual and physical prototypes;
- on-board, low-cost torque sensors, 3-D visualisation environment;

ModGrasp, not only an engineering tool but mostly a scientific tool:

a framework that can be used to discover new ways of controlling modular hands.

[1,4]

CI UIA University

^[4] Filippo Sanfilippo et al. "ModGrasp: an Open-Source Rapid-Prototyping Framework for Designing Low-Cost Sensorised Modular Hands". In: *Proc. of the 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), São Paulo, Brazil.* IEEE RAS & EMBS. 2014, pp. 951–957.

Bio-inspired robotic hands

ModGrasp architecture and control approach

A mind-controlled low-cost sensorised modular hand

Closing the loop with haptic feedback

Low-cost torque sensing and joint compliance

Control approach

[5]

Bio-mechatronics course at UiA

A three-fingered modular manipulator

Let $q_h \in \mathbb{R}^{n_{q_h}}$, with n_{q_h} representing the number of actuated joints. The subspace of all configurations can be represented by an input vector $z \in \mathbb{R}^{n_z}$ (with n_z denoting the number of inputs and $n_z \leq n_{q_h}$) which parameterises the motion of the joint variables along the *synergies*:

$$\dot{q}_h = S_h \dot{z}, \tag{1}$$

being $S_h \in \Re^{n_{q_h} \times n_z}$ the synergy matrix.

$$S_h = \left[\begin{array}{ccc} -0.7 & 0 \\ -0.2 & 0 \\ -0.1 & 0 \\ 0 & -1.6 \\ -0.7 & 0 \\ -0.2 & 0 \\ -0.1 & 0 \\ 0 & 1.6 \\ -0.7 & 0 \\ -0.2 & 0 \\ -0.1 & 0 \end{array} \right] Finger 1.$$

$$Finger 2$$

Control objective idea

Bio-inspired robotic hands and modular grasping
Paraplegia
Rehabilitation of Stroke Patients
Bio-mechatronics course at UiA

Bio-inspired robotic hands ModGrasp architecture and control approach A mind-controlled low-cost sensorised modular hand Closing the loop with haptic feedback

Experimental results

CI UIA University

https://youtu.be/XXUXd_352sE

Bio-inspired robotic hands and modular grasping
Paraplegia
Rehabilitation of Stroke Patients
Bio-mechatronics course at UiA

Bio-inspired robotic hands ModGrasp architecture and control approach A mind-controlled low-cost sensorised modular hand Closing the loop with haptic feedback

Closing the loop with haptic feedback

https://youtu.be/sT6oxMxvXYE

[6] Filippo Sanfilippo, Lars Ivar Hatledal, and K Pettersen. "A fully-immersive hapto-audio-visual framework for remote touch". In: *Proc. of the 11th IEEE International Conference on Innovations in Information Technology* (IIT'15). Dubai. United Arab Emirates. 2015.

Rehabilitation of Stroke Patients Bio-mechatronics course at UiA

Paraplegia

Teleoperated robotics vs. proprio and teleoperation Mixed reality (MR) Enabled Proprio and Teleoperation Framework Architecture Human Subject Study

Paraplegia

Activities of Daily Living (ADLs)

Eating/Drinking

Showerin

|

Toileting

Functional Mobility Ability to move oneself
from bed to
chair/wheelchair.

Mobility - Walking on flat surfaces

- Paraplegia is a paralysis starting in the thoracic (T1-T12), lumbar (L1-L5) or sacral (S1-S5) area, which results in the inability to voluntarily move the lower parts of the body.
- However, persons with paraplegia usually possess good functioning of the arms and hands.
- Consequently, for paraplegic patients, teleoperated robotics could provide a formidable improvement in the quality of life.

Teleoperated robotics

Teleoperated robotics:

- the operator site where the master and the human operator are located;
- the remote site where the robot, performs the remote task;
- The human is isolated from the working environment and is to be safe at every moment.

Proprio and teleoperation

Proprio and teleoperation:

- Sometimes both areas, the operator and remote environment are the same, but not at all times.
- The human operator teleoperates the robot whose working environment includes himself or herself.
- This paradigm enables the possibility of adopting teleoperated robotics in a home environment or a work environment.

Rehabilitation of Stroke Patients Bio-mechatronics course at UiA

Mixed reality (MR) Enabled Proprio and Teleoperation of a Humanoid Robot for Paraplegic Patients

Proposed idea:

- a mixed reality (MR) enabled proprio and teleoperation framework;
- to develop a teleoperated robotic system that will assist paraplegic people with ADLs;
- the adopted humanoid robot is the EVEr3 Humanoid Research Robot from Halodi Robotics;
- the Unity gaming engine and the Oculus Rift S controller are employed for augmenting the patient capabilities.

[7]

OIA University

^[7] Halodi Robotics. EVEr3: machine learning ready direct force control self balancing mobile manipulator platform. https://halodi.com/ever3. [Online; accessed 6-May-2021]. 2021.

The high-level representation of the framework

The high-level representation of the framework:

- the underlying idea is that the robot operator can provide the desired control inputs from an MR application. The interaction is enabled by a simulator where the robot avatar and the control interface are integrated;
- the control inputs are forwarded to the robot controller to be actuated by the robot.

Rehabilitation of Stroke Patients
Bio-mechatronics course at UiA

Paraplegia
Teleoperated robotics vs. proprio and teleoperation
Mixed reality (MR) Enabled Proprio and Teleoperation
Framework Architecture
Human Subject Study

Proposed framework architecture

Whole-body inverse kinematics

The inverse kinematics problem is formulated as an iterative Quadratic Program (QP), which optimises for the set of joint velocities v_d that are the closest to the given inputs after the next integration step. The QP is formulated as:

minimise
$$\frac{1}{2}(Jv_{d}-p)^{T}C_{w}(Jv_{d}-p) + \frac{1}{2}(Av_{d})^{T}C_{h}(Av_{d}) + \frac{1}{2} \cdot c_{v}v_{d}^{T}v_{d}, (1)$$
 (3)

where, $(Jv_d - p)^T C_w (Jv_d - p)$ are the motion tasks. The desired motion tasks p_i , where i = 1...n is the identifier for the task, provide objectives to the optimisation problem in the form of $J_i v_d = p_i$, where v are the desired joint velocities and J_i is the Jacobian matrix. J is the combination of the task jacobians J_i . The motion tasks are added as an objective with the weight matrix C_w , allowing prioritisation of tasks. $(Av_d)^T C_h (Av_d)$ minimises centroidal momentum. $\frac{1}{2} \cdot c_v v_d^T v_d$ ensures that the resulting hessian matrix is invertible.

Bio-mechatronics course at UiA

Whole-body inverse kinematics

Other essential components

- Real-time Whole-Body Controller. Provides an efficient push recovery and balancing controller that allows the user to be confident in moving the robot without worrying about falling over.
- Trajectory Manager. The trajectory manager receives desired task space commands from the EVEr3 MR Interface and filters those with a first order low-pass filter, before sending them on to the Real-time Whole-Body Controller. The filtering smooths out possible jitters introduced in the network layer, as well as the update rate of the MR application.
- ZED Streaming. Visual sensing is provided using a ZED2 stereo camera mounted in the robot head.
- Hand Controller. The robot has two QB Robotics SoftHands, controlled trough a ROS2 node. The SoftHands have a single actuator and mechanically adapt to grasp a wide variety of objects.

Paraplegia
Teleoperated robotics vs. proprio and teleoperation
Mixed reality (MR) Enabled Proprio and Teleoperatio
Framework Architecture
Human Subject Study

Human Subject Study

The human subject performing the task.

The EVEr3 MR application.

The EVEr3 Humanoid Research Robot.

Experimental Results

The Igroup Presence Questionnaire (IPQ):

- assesses the sense of presence experienced in a virtual environment (VE);
- it has three sub-scales: a) spatial presence the sense of being physically present in the VE; b) involvement - measuring the attention devoted to the VE and the involvement experienced; c) experienced realism - measuring the subjective experience of realism in the VE;
- an additional general item assesses the "sense of being there", and has high loadings on all three factors, with an especially strong loading on spatial presence.

[8]

[8] Shahri M Panahi et al. "Reliability and validity of igroup presence questionnaire (IPQ)". In: (2009).

Bio-inspired robotic hands and modular grasping
Paraplegia
Rehabilitation of Stroke Patients
Bio-mechatronics course at UiA

Teleoperated robotics vs. proprio and teleoperation
Mixed reality (MR) Enabled Proprio and Teleoperation
Framework Architecture
Human Subject Study

Demo

https://youtu.be/vZw1Ne-kB5Y

Rehabilitation of Stroke Patients

^[9] Tom Verplaetse et al. "On usage of EEG brain control for rehabilitation of stroke patients". In: 30th European Conference on Modelling and Simulation, Regensburg Germany, May 31st—June 3rd, 2016. ECMS European Council for Modelling and Simulation. 2016.

Bio-mechatronics course at UiA

Studier Forskning Samarbeid Om UiA

Studieplaner

Bio-mechatronics

MAS511-G

Inngår i studieprogram

· Mekatronikk, masterprogram

Anbefalte forkunnskaper

MAS200, MAS105

Læringsutbytte

On successful completion of the course, the student should be able to:

- explain and summarise the motivation, state-of-the-art, ethical issues and future challenges in biomechatronics
- analyze human as a biomechanical system
- understand the critical elements of biomechatronics and their interaction with biological systems

Emnebeskrivelse for studieår

2021-22

Varighet
1 semester

Studiepoeng
7.5

Start
Høst

Studiested
Grimstad

Fakultet
Fakultet for teknologi og realfag

https://www.uia.no/studieplaner/topic/MAS511-G

Thank you for your attention

Contact:

 Professor Filippo Sanfilippo, Department of Engineering Sciences, Faculty of Engineering and Science, University of Agder (UiA), Jon Lilletuns vei 9, 4879, Grimstad, Norway.

Email: filippo.sanfilippo@uia.no.

 To know more about my research activity, please visit my website at: http://filipposanfilippo.inspitivity.com.

References I

- [1] Filippo Sanfilippo, Houxiang Zhang, and Kristin Ytterstad Pettersen. "The New Architecture of ModGrasp for Mind-Controlled Low-Cost Sensorised Modular Hands". In: *Proc. of the IEEE International Conference on Industrial Technology (ICIT2015), Seville, Spain.* 2015, pp. 524–529.
- [2] S. Cobos, M. Ferre, and R. Aracil. "Simplified human hand models based on grasping analysis". In: *Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*. 2010, pp. 610–615.
- [3] Filippo Sanfilippo et al. "Efficient modular grasping: an iterative approach". In: Proc. of the 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy. 2012, pp. 1281–1286.
- [4] Filippo Sanfilippo et al. "ModGrasp: an Open-Source Rapid-Prototyping Framework for Designing Low-Cost Sensorised Modular Hands". In: *Proc. of the 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), São Paulo, Brazil.* IEEE RAS & EMBS. 2014, pp. 951–957.
- [5] M. Santello, M. Flanders, and J. F. Soechting. "Postural hand synergies for tool use". In: *The Journal of Neuroscience* 18.23 (1998), pp. 10105–10115.

References II

- [6] Filippo Sanfilippo, Lars Ivar Hatledal, and K Pettersen. "A fully-immersive hapto-audio-visual framework for remote touch". In: *Proc. of the 11th IEEE International Conference on Innovations in Information Technology (IIT'15), Dubai, United Arab Emirates.* 2015.
- [7] Halodi Robotics. EVEr3: machine learning ready direct force control self balancing mobile manipulator platform. https://halodi.com/ever3. [Online; accessed 6-May-2021]. 2021.
- [8] Shahri M Panahi et al. "Reliability and validity of igroup presence questionnaire (IPQ)". In: (2009).
- [9] Tom Verplaetse et al. "On usage of EEG brain control for rehabilitation of stroke patients". In: 30th European Conference on Modelling and Simulation, Regensburg Germany, May 31st—June 3rd, 2016. ECMS European Council for Modelling and Simulation. 2016.

Morten Ottestad

Head of aplication area assisted Living at Top Research Centre Mechatronics Study Program Manager Master Mecatronics

My interesses is
Motion control Hydraulic /electric
Sensors instrumentation an sinnal prossesing
Machine vision
Mobile autonomous system

What is the mission of welfare technology

Why welfare technology is more important than before

Demographic development

- The need for increased quality
- The need to increase intensity
- The need for increased volume
- Reduce costs
- Demographic developments

•

How can mechatronics contribute to the development of welfare technology

What is welfare technology

- Welfare technology is all the technology witch in one ore another way
- Welfare technology make people more autonomous

•

Welfare technology and mechatronics

Aids Autonomous Stair Climber

Dataassistert rehabilitering

