

EMERALD e-toolkit for teaching purposes, basic knowledge about realizing biomimetic mechatronic systems

Răzvan PĂCURAR, Filip GÓRSKI, Filippo SANFILIPPO, Diana BĂILĂ, Branislav RABARA, Martin Bjaadal ØKTER, Dan-Sorin COMȘA, Emilia SABĂU, Magdalena ŻUKOWSKA, Dominik RYBARCZYK, Natalia WIERZBICKA, Radosław WICHNIAREK, Wiesław KUCZKO, Roman REGULSKI

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC MECHATRONIC SYSTEMS PROJECT

2023

Acknowledgement: The publishing of this e-toolkit has been financially supported by the project entitled "European network for 3D printing of biomimetic mechatronic systems", The Education, Scholarships, Apprenticeships and Youth Entrepreneurship Programme – SEE Grants 2014-2021. Project reference: 21-COP-0019.

CONTENT

Introduction	2
Computer Aided Design	3
Computer Aided Engineering	31
3D Printing	69
New materials used for the developed biomimetic mechatronic	
systems	114
Virtual Reality / Augmented Reality	137
3D Printable Robotic Arm	152
Conclusions	173

INTRODUCTION

The "European network for 3D printing of biomimetic mechatronic systems - 21-COP-0019 - EMERALD project, which is part of the Education, Scholarships, Apprenticeships, and Youth Entrepreneurship Programme (ESAYEP) under the EEA Grants 2014-2021, represents a collaborative effort between technical universities coming from Romania (Technical University of Cluj-Napoca and University Politehnica Bucharest), Norway (University of Agder), Poland (Poznan University of Technology), and one private company coming from Slovakia (Bizzcom). This project that is part of the "2021 Cooperation Projects in Higher Education Area," which was implemented in the period 2022-2023 has been focusing on providing educational tools concerning the development of biomimetic mechatronic systems for people with special needs (with amputated arms) by 3D printing technologies. The EMERALD consortium partners have tried to find adequate methods of integrating theoretical knowledge with practical application in the field of biomimetic mechatronic systems realized by 3D printing technologies for people with special needs (with amputated arms) in the end. This integration can be clearly seen in the EMERALD e-toolkit manual, a comprehensive guide that has been developed in order to bridge the gap between theoretical aspects shown in the e-book that comprise basic knowledge and theoretical information as basics for real practical applications, focused on the conceiving, manufacturing and testing of biomimetic mechatronic systems for people with special needs (with amputated arms), using 3D printing technologies.

The e-toolkit manual which is the result of the collaborative creation of the EMERALD consortium partners serves as a detailed laboratory guide that goes beyond theoretical information, providing step-by-step instructions on how to design, manufacture and test biomimetic mechatronic systems realized by different types of 3D printing methods. The content of the e-toolkit manual is comprehensive, covering every essential stages in the development of such systems, beginning with the pre-validation of Computer Aided Design (CAD) models through Computer Aided Engineering (CAE) analyses, continuing with the selection of suitable materials for 3D printing, integrating of sensors and transducers and ending with programming, assembling, as well as the use of Virtual Reality / Augmented Reality applications being applied for these systems.

A key goal of the e-toolkit manual is to encourage the practical application of theoretical concepts learned in the course modules provided in the e-book by engaging both professors and students to go one step forward in producing practical case studies of biomimetic mechatronic systems for people with amputated arms, guiding them through each developing stage with detailed instructions that are being offered on the e-toolkit manual. This hands-on approach not only enhances learning, but also stimulates creativity, prompting the design of new personalized biomimetic mechatronic solutions. These solutions incorporate innovative ideas in shape and material selection, customized to specific manufacturing settings and use of different 3D printing technologies for the producing of real practical biomimetic mechatronic systems to support real patients with amputated arms in the end.

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 2

EMERALD

Page | 3

The Education, Scholarships, Apprenticeships and Youth Entrepreneurship

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC

MECHATRONIC SYSTEMS

E-toolkit –

Computer Aided Design

Project Title	European network for 3D printing of biomimetic mechatronic systems 21-COP-0019
Output	O2 - EMERALD e-toolkit manual for digital learning in producing biomimetic mechatronic systems
Module	 Computer Aided Design (CAD) Design of selected biomimetic 3D printed mechatronic devices
Authors	Filip GÓRSKI, Natalia WIERZBICKA, Magdalena ŻUKOWSKA, Dominik RYBARCZYK

Working together for a green, competitive and inclusive Europe

1	Introduc	tion	. 5
2	Design o	of mechanical part of the prosthesis	. 6
	2.1 N	Main assumptions	. 6
	2.2	Generative CAD model – principles of operation	. 6
	2.3 P	Prosthesis model design	. 8
	2.3.1 2.3.2 2.3.3	Prosthetic socket Forearm End effector	17
	2.4 F	inal version of bicycle prosthesis	23
	2.5 C	Design of electronic part of the biomechatronic prosthesis	27
	2.5.1 2.5.2	Main concept of the mechatronic prosthesis Design modifications in biomechatronic prosthesis	

3	Summary	28
---	---------	----

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

1 Introduction

This toolkit presents practical information on how to a CAD model of a biomechatronic hand prosthesis can be built and structured. An example of modular prosthesis will be considered, with its adjustment to needs and preferences of an adult patient and converting static mechanical device into a mechatronic prosthesis, equipped with sensors for monitoring the activities performed by prosthesis user.

LEGAL INFORMATION: all the basic (input) CAD models, know-how and other intellectual property presented in this toolkit, if not stated otherwise, belongs to Poznan University of Technology. It is not allowed to use the shared materials for commercial purposes, they can be used solely for educational properties in the scope of the EMERALD project, by authorized persons taking part in training performed with participation of instructors accepted by PUT team.

2 Design of mechanical part of the prosthesis

2.1 Main assumptions

The prosthesis has been prepared for continuous and demanding cycling for an adult patient. The modular mechanical prosthesis was originally generated automatically for the child. Then, the necessary changes were made to adapt it to an adult. After testing and optimizing the bicycle, the adult mechanical prosthesis was transformed into a mechatronic one through sensorization.

The modular model of the prosthesis has been described in multiple previous work by the team of authors [1-2], or supervised by them (Master's thesis [3] and [4]). Most of the descriptions in this chapter come from these works, as well as previously undisclosed project reports.

2.2 Generative CAD model – principles of operation

In this work, a project of an intelligent model of the upper limb prosthesis was implemented, which is characterized by a modular structure. The device is an integrated whole composed of many components with unified terminals. The model is loaded with anthropometric and configuration data directly from an external Excel file, enabling both the generation of anatomically matched prosthesis components and the manipulation of its variants to create any combination of all parts. Therefore, the model allows for the quick and fully automated production of many configurations of individualized prostheses for the same or many different patients. The architecture of the modular model is shown in Figure 1.

The concept of the model was made as part of the project "Automation of design and rapid production of individualized orthopedic and prosthetic products based on data from anthropometric measurements", serving the development of the prototype AutoMedPrint system built at the Faculty of Mechanical Engineering of the Poznań University of Technology.

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 6

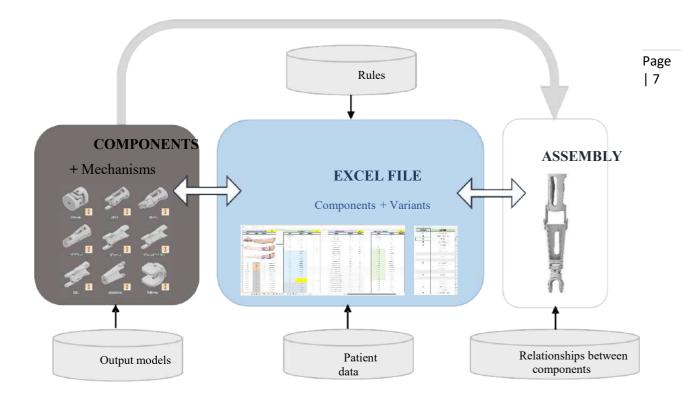


Figure 1 Architecture of the designed system [3]

The model consists of three types of main components - sockets, forearms and effectors. Types of individual elements of a given type are presented in Table 1. However, the modular prosthesis also includes sacroiliac joints (cardans) that function as a movable wrist joint, an assembly adapter and an elbow module that imitates flexion and extension in the frontal plane.

Page | 8

Table 1 List of components of the modular model

Prosthetic sockets	Prosthetic forearms	Effectors		
 CRS compression and relaxation socjet (4 variants) Open socket (2 variants) Semi-open socket (3 variants) CRS socket for amputation within the forearm 	 Forearm open Open forearm with a tip dedicated to the adapter Closed forearm with a tip dedicated to the adapter Forearm completely closed with a tip dedicated to the adapter 	 C-Handle Fixed straight handle Fixed angular handle Straight handle with a spring A mechanical hand 		
Connecting and auxiliary elements				
Cross joints2 adapters	 External model of the elbow A shaped piece that blocks the elbow joint 			

All elements are designed from the beginning in a parametric angle, making the dimensions of the elements dependent on anthropometric measurements from scans of healthy upper limbs of patients.

2.3 Prosthesis model design

2.3.1 Prosthetic socket

The first stage of creating an autogenerating model of upper limb prostheses was modeling the structure of the prosthetic socket. The socket is generated on the basis of data from spatial scanning of the patient's residual limb. The algorithm developed by the team of the Rapid Manufacturing Laboratory of the Production Engineering Department of the Poznań University of Technology exports data from the STL mesh in the MeshLab program to a previously prepared template Excel file, which is connected to the autogenerating model.

In the MeshLab program, the STL grid of the patient's residual limb is located in the central part of the coordinate system so that the Z axis of the system is the imaginary axis of the arm.

The scan of the stump must be oriented with its inner part in the direction of the X axis ("up") in order to correctly generate the loosening holes and tissue compression pads (Figure 2).

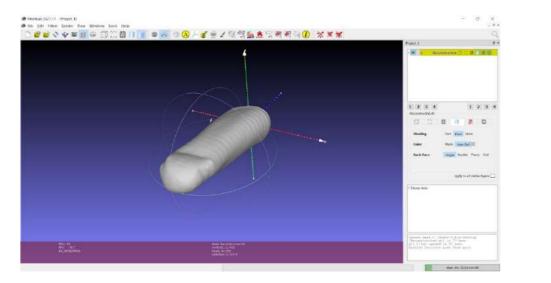


Figure 2 Correct orientation of the STL mesh in MeshLab

First, with the Offset from Plane command, six work planes (Figure 3) were created as offsets from the XY origin plane of the coordinate system (Figure 4). The value of the offsets of individual planes from the XY plane is defined by the user parameter P_n, where $n \in \langle 1:6 \rangle$ is the number of the plane.

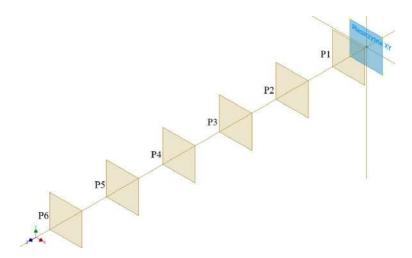
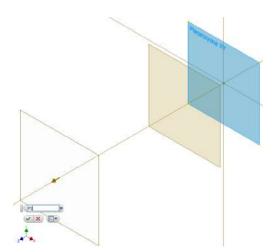


Figure 3 Construction planes defining cross-sections through the patient's vestigial limb



Page | 10

Figure 4 Generating a plane using the Offset from Plane function

The P1 plane marks the place of the first cross-section through the STL mesh of the patient's stump, and thus the edge of the prosthetic socket. The plane P6, on the other hand, marks the place of the last section through the distal part of the vestigial limb and defines the end of the socket. The positions of these two planes are determined in the special AutoMedPrint Limb Calibrator application provided by the team of the Virtual Design Laboratory of the Poznań University of Technology (Figure 5).

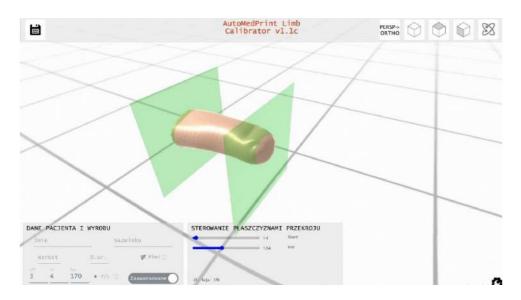


Figure 5 Determination of the extreme positions of the residual limb cross-sectional planes - the AutoMedPrint Limb Calibrator application

Working together for a green, competitive and inclusive Europe

The algorithm fills an Excel workbook with data, thanks to the implemented rules, the model is loaded with information necessary to generate the model (e.g. the value of the offset between the planes, or the position of the next planes. The user parameters created at this stage were combined with the model parameters (Figure 6) in the dialog box Inventor Parameters.

d0	Płaszczyzna konstrukcyjna1	mm	P1
- d1	Płaszczyzna konstrukcyjna2	mm	P2
- d2	Płaszczyzna konstrukcyjna3	mm	P3
d3	Płaszczyzna konstrukcyjna4	mm	P4
- d4	Płaszczyzna konstrukcyjna5	mm	P5
d5	Płaszczyzna konstrukcyjna6	mm	P6

Figure 6 Model parameters related to construction planes

The next step in constructing the prosthetic socket was to create six sketches on previously generated planes. Each sketch is a spline curve built from eight points specified by x and y coordinates. Initially, splines were drawn based on random points. After combining the model parameters with the user parameters from Excel, using the Update Local function, the coordinates of the spline building points were updated. As a result of the update, the outline that a single spline forms is the outline of a cross-section through the vestigial limb (Figure 7).

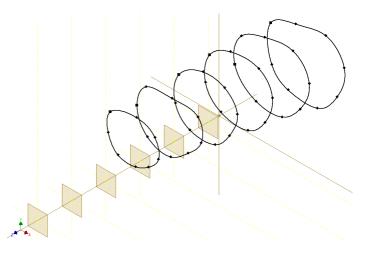
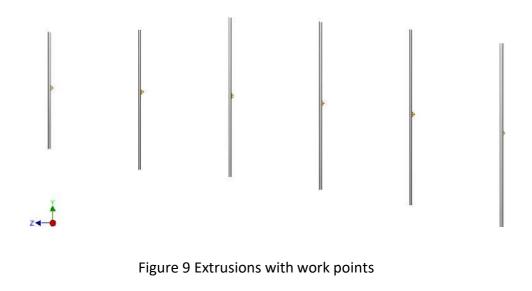


Figure 7 Six splines mapping the outline of cross-sections through the patient's vestigial limb

The data exported from one section in MeshLab are the x, y, z coordinates of the points forming the outline of the stump at the location of this section. The algorithm randomly selects

Working together for a green, competitive and inclusive Europe


eight points with a specified spacing between them and completes the cells in the Excel spreadsheet (Figure 8). The x coordinates are specified by the user parameter x_{i_j} , where $i \in \langle 1:8 \rangle$ is the spline point number and $j \in \langle 1:6 \rangle$ is the sketch number.

8	x1_1	-36,03267
9	y1_1	20,41032
10	x2_1	-10,21343
11	y2_1	32,27849
12	x3_1	20,57136
13	y3_1	37,30608
14	x4_1	39,542
15	y4_1	17,76262
16	x5_1	32,19633
17	y5_1	-11,46023
18	x6_1	11,69784
19	y6_1	-31,69644
20	x7_1	-18,21643
21	y7_1	-30,42693
22	x8_1	-34,93382
23	y8_1	-16,15504

Page | 12

Figure 8 The x, y coordinates of the spline building points, sketch #1

In the next step, using the Extrude from sketches function, six extrusions were created with a distance of each extrusion equal to 1 mm. Then, six work points were generated on the extruded faces using the Edge Loop Midpoint function (Figure 9).

Working together for a green, competitive and inclusive Europe

Then another six sketches were created on the back faces of the extrusions. A single sketch consists of projected cutting edges and three offsets from the outline of the reference geometry (Figure 10). The first offset determines the wall thickness of the socket taking into account the offset of the prosthetic socket surface from the surface of the residual limb. The second offset defines the offset of the inner socket wall from the residual limb. The last offset determines the thickness of the compression pads, taking into account the offset of the socket surface from the stump surface.

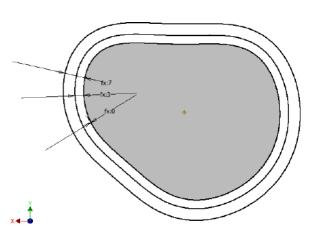


Figure 10 Three offsets from the section outline

After calculating the values of the offsets, applying them and using the loft function, a solid was obtained (Figure 11).

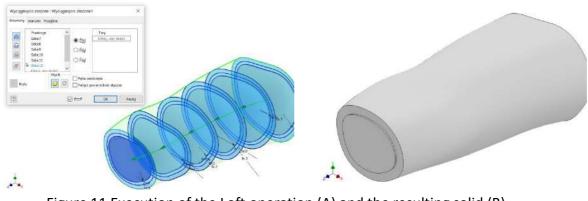


Figure 11 Execution of the Loft operation (A) and the resulting solid (B)

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 13

Working together for a green, competitive and inclusive Europe

Then, by performing the Loft operation again, this time in Cutout mode, the inner part of the solid was cut out (Figure 12).

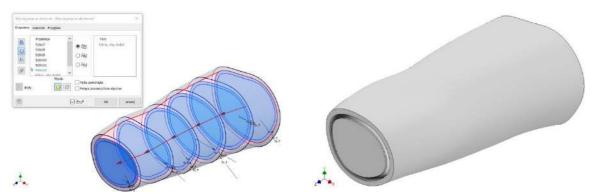


Figure 12 Execution of the Loft operation in Cutout mode (A) and the resulting solid (B)

At the last stage of generating the basic geometry of the prosthetic socket, its end was modeled. To do this, two Close Boundary operations were performed with a tangency condition assigned a parameter named boundary_close. As a result, two convex construction surfaces were generated, defined by the outer and inner edges of the geometry, respectively (Figure 13A). In addition, the Sculpture operation was performed, which resulted in generating a solid bounded by two surfaces of the envelope closure (Figure 13B).

Figure 13 Perform a Close Boundary operation (A) and a Sculpture operation (B)

The next step was to model the geometry of the compression pads (the compression part of the socket) using the Loft operation in the New Solid mode, through previously created sketches. Then, a Loft operation was performed in Cutout mode based on the curves defining the thickness of the inserts (Figure 14A). The result was a second body with a wall thickness equal to that of the compression pads (Figure 14B).

Page | 15

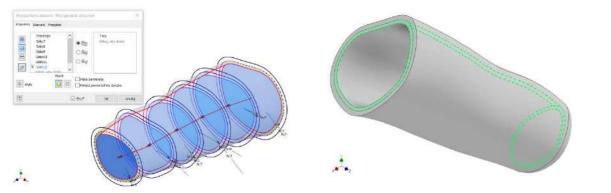


Figure 14 Execution of the Loft operation in Cutout mode (A) and the resulting solid (B)

In the next step, four holes were made to accommodate the tissue compressed by the inserts (relaxation part of the socket). For this purpose, two work planes were created using the Parallel to plane through point function, where Work Point 1 and the YZ and XZ planes were used as references in both cases. Four sketches were then created, with the reference points being two work points #1 and #6. Cuts were made in both solids using asymmetric Revolve operations in Cutout mode (Figure 15). Using the asymmetry mode gives you the ability to modify the size of the hole in two directions from the plane on which the sketch is

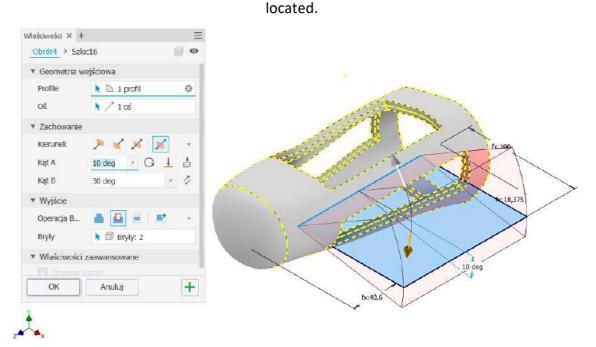


Figure 15 Making a hole using the Revolve operation

Working together for a green, competitive and inclusive Europe

The dimensions that define the sketches are assigned user parameters - they are calculated using rules implemented in the Excel spreadsheet.

Then, two Extrude operations were performed in Cut-out mode, trimming the compression pads to the length of the hole on the inside of the socket. In the next step, roundings of the geometry of the inserts and holes were created. Then, using the Create Combination function, the two solids were joined together and the rest of the fillets were made. As a result, the finished socket geometry was obtained (Figure 16).

Page | 16

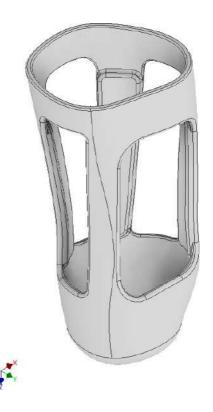
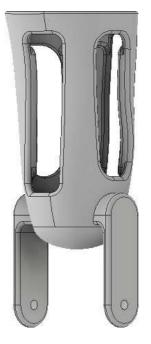
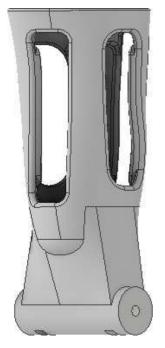


Figure 16 Modeled geometry of the prosthetic socket

The next step was to connect the CRS socket with the forearm. For this purpose, two solutions by making a version with universal mounting and the possibility of disabling the builtup bottom (Figure 17A) and with a version with recessed mounting (Figure 17B).





Page | 17

Figure 17 CRS sockets obtained as a result of analogous operations: A: with universal fastening; B: with flush mount

2.3.2 Forearm

The modular model of the prosthesis assumes the possibility of personalization and generating its modified variants. As part of this work, a model of the open forearm - dedicated to children and the closed forearm - for adults was presented. This is related to the load imposed by the user. The spatial form of the forearms is created by a complex extrusion, connecting two cross-sections - the first showing a rectangle with rounded corners and the second - its offset version, defined by the offset parameter. You can manipulate the parameter while keeping the width of the first sketch constant. Therefore, the parameter dimension_j was also introduced to the geometry of the forearms, matching it to the designed adapters. However, the offset parameter (Figure 18) was retained, enabling the automatic generation of a second cross-section proportional to the wrist, distanced by the length of the Forearm determined on the basis of the spatial scan (also the output parameter from the original supply sheet).

Page | 18

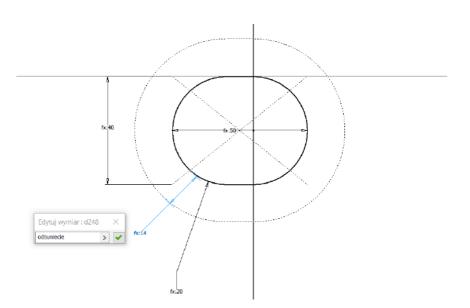


Figure 18 Base for forearm geometry

The introduction of a universal dimension then made it possible to associate other design features with it, such as e.g. joint spacing. Parameters describing other geometrical features, such as an indentation in the bottom wall, were also combined to proportionally change their size as the length of the component changes (Figure 20A). The dimension of additional extrusions used for assembly with a prosthetic socket was also increased, changing the radius of the element from 9 to 12 mm (Figure 20B) and the dimension of the diameter of the mounting hole was parameterized (, currently equal to 5.2 mm).

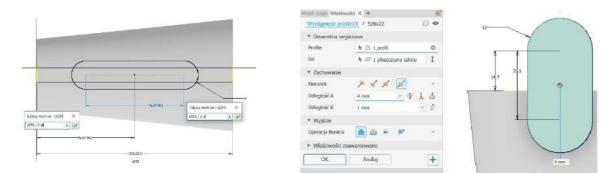


Figure 19 A: Relationship between the length of the Forearm and the dimensions of the notch in the bottom wall. B: Widening of the forearm assembly parts

Working together for a green, competitive and inclusive Europe

Then, three more variants of the Forearm were made, taking into account the assembly of adapters. They include a forearm in the classic open version with an appropriate tip, a forearm with a structure closed from the outside but empty inside (eliminating the operation of cutting in the upper and lower walls) and a completely built-up body.

The indentation in the tip dedicated to the assembly of the adapter was made at the initial stage of modeling the forearms, just before the use of the shell operation hollowing out the element from the inside. On the surface described by the base sketch, another one was added, on which the parameterized sketch of the external frame of the adapter was mapped. Then, it was moved away by 0.5 mm, designing the necessary clearance between the components, and a cutout was made in the solid at a distance of 22 mm, i.e. to the height of the adapter (Figure 21).

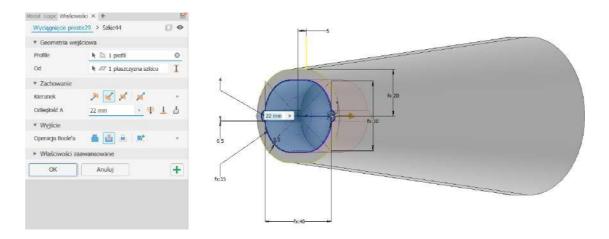


Figure 20 Designing geometry dedicated to the connection with the adapter - a cutout in the base solid

Further operations were performed at the end of modeling - a hole was designed for the convex part of the adapter, keeping 1 mm of clearance from the top and sides of the tab, a locking hole was made in the surface of the element and a widened indentation in the top

Working together for a green, competitive and inclusive Europe

wall, which provides additional space for the protruding part of the thermoplastic fiber fixing the smaller element inside the adapter.

These operations made it possible to obtain a matching tip to the adapter introduced at the start. Similar steps were then performed for the closed and fully closed forearm. The first of the built-up forearms has retained the form of a classic component. However, the operation of making cuts along the upper structure and in the lower part of the element was eliminated from its construction (Figure 22).

Page | 20

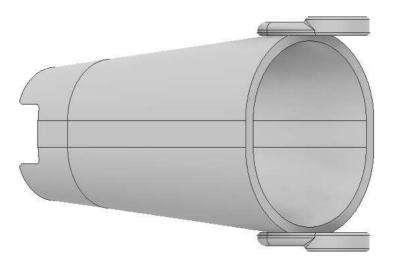


Figure 21 Closed forearm form

2.3.3 End effector

A C-handle was proposed as the effector, based on a simple horseshoe-shaped sketch (Figure 22).

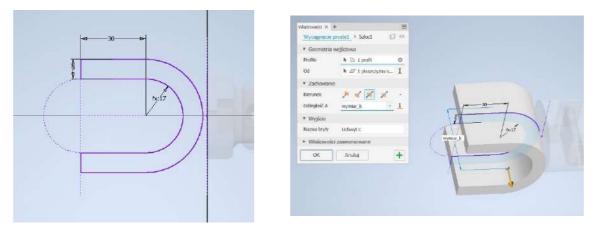


Figure 22 Start modeling the effector: A: sketch; B: straight pull out

An opening was then created to allow access to the mounting hardware of the adapter connecting the handle to the forearm (Figure 23).

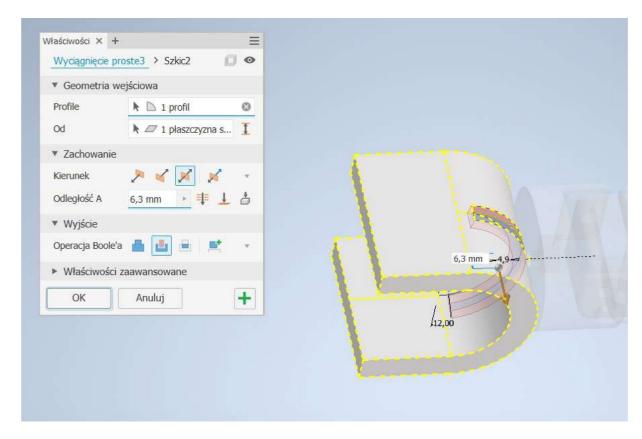


Figure 23 Opening for access to connecting elements

Page

| 22

The next stage of work was to tilt the walls and round all sharp edges (Figure 24).

Figure 24 Successive stages of the formation of the effector: A: inclination of the walls, B: rounding of the walls

The last stage was to model the element connecting the handle with the forearm using the extrude function on a previously prepared sketch (Figure 25).

 Geometria we 	ejściowa		
Profile	N 🗈 1 profil	0	
Od	🕅 🖉 1 płaszczyzna s	I	Å
▼ Zachowanie			fx:40
Kierunek	> 🖌 🖌		
Odległość A	(2,000 mm; 🕨 🕸 🔟	ð	
Do	🔭 🖉 1 powierz 🛃	5	- R 50
 Wyjście 			
Operacja Boole'a	📥 💩 🖻 📑		
Nazwa bryły	Bryła7		fic:20
Właściwości z	aawansowane		
ОК	Anuluj	+	

Figure 25 Connecting element to the wrist (extrude a previously prepared sketch)

Depending on the application, various effectors have been prepared, which, thanks to parameterization, form a coherent whole with other components, enabling each time tailored construction variants.

2.4 Final version of bicycle prosthesis

Page | 23

The modular prosthesis was generated using an generative (intelligent) model prepared for pediatric cases (Figure 26). The resulting model had to be adapted to the requirements of an adult user.

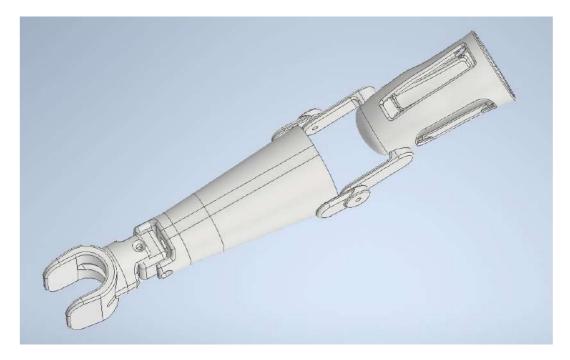


Figure 26 The effect of work of intelligent model - bicycle prosthesis for a child

First, the model was adjusted to the adult patient by 3D scanning and using functionalities of the intelligent model to re-create the geometry. Resulting prosthesis was 3D printed, assembled and tested by the patient (Figure 27).

Working together for a green, competitive and inclusive Europe

Page | 24

Figure 27 Prosthesis made for a selected adult patient – test with the bicycle

In the course of numerous tests and subsequent design iterations, the following modifications have been introduced:

- The CRS socket was modified as a result of removing the movable connection in the elbow joint. It was connected to the forearm rigidly due to too much load in the case of an adult - the proposed movable connection used in the case of children's prostheses was breaking.
- The mounting plane was moved away from the tip of the socket to a properly selected distance. A circular sketch was made on the plane with dimensions to match the forearm, and then a loft operation was performed between the assembly plane and the selected socket section to achieve a smooth transition between the solids. These operations were performed before soft tissue cuts in the socket structure, because the

solid reached higher than the planned relaxation holes. Finally, mounting hardware was added to allow connection to the forearm (Figure 28).

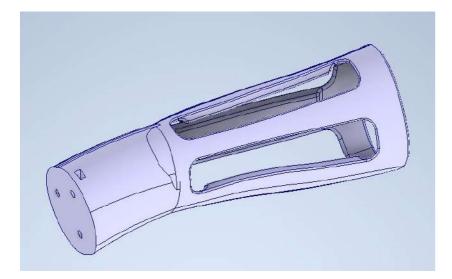
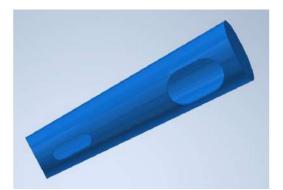



Figure 28 The final form of the CRS socket for an adult adapted to cycling

 Forearm - the model has been changed as a result of abandoning the movable joint in the elbow joint. In addition, its termination was modeled by using the function Close envelope with tangency condition. Finally, five mounting holes and two access holes were added (Figure 29).

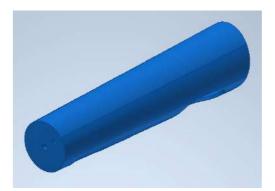
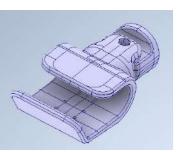


Figure 29 The final form of the forearm for an adult adapted to cycling

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.



Page | 25

• The C-handle has been modified by extending the jaws and narrowing the distance between them. These changes were introduced after listening to Mr. Maciej's comments - they increased the stability and comfort of cycling. In addition, the connection used in the wrist was abandoned - the lack of a joint resulted in an increase in stiffness with the simultaneous impossibility of rotation. This was possible after adjusting the angles for a given patient and his bike.

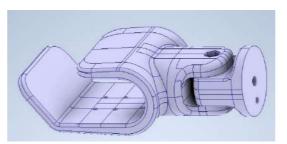


Figure 30 The final form of the C handle for an adult adapted to cycling

Figure 31 presents a complete model of the prosthesis prepared for an adult and adapted for cycling.

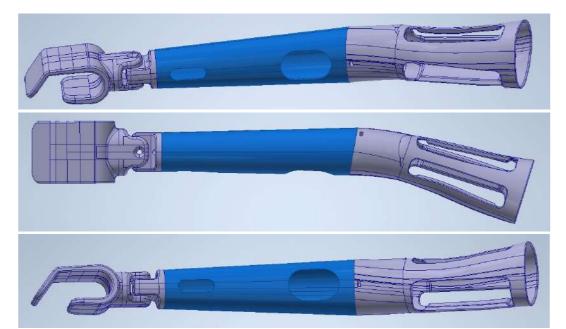


Figure 31 The final model of an adult bicycle prosthesis. View: A: Isometric; B: from above; B: from the side

Working together for a green, competitive and inclusive Europe

2.5 Design of electronic part of the biomechatronic prosthesis

2.5.1 Main concept of the mechatronic prosthesis

The aim of the work was to modify the hand prosthesis in order to create a biomechatronic device, used by human, with monitoring of activities performed in the prosthesis (mostly cycling or similar activities). Main aim was placing an electronic measuring system in the prosthesis, thanks to which it would be possible to determine its operating properties. The detailed purposes of the built electronic system were to:

Page | 27

- measurement of the orientation of the upper limb prosthesis in space,
- measurement of the force exerted in the wrist,
- saving data on the SD card.

The device consisted of the following components:

- microcontroller module (Arduino NANO),
- force sensor measuring amplifier module (HX711 with force sensor up to 200N),
- inertial sensor module (BOSCH BNO055),
- SD card module,
- power source (a USB connected powerbank).

The components were selected to fulfil their role in the simplest possible manner, ensuring robust operation, steady and stable communication, as well as maintaining as low price as possible (as the whole prosthesis is also a low-cost project). The schematic diagram of the designed device is shown in the Figure 32.

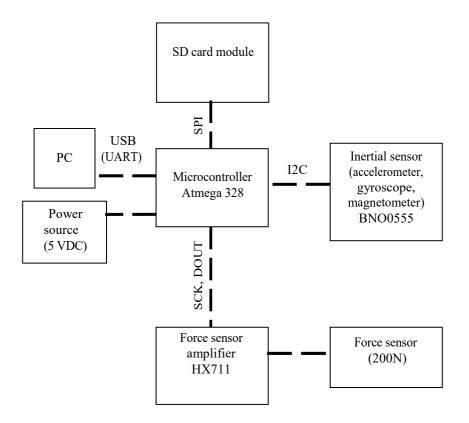


Figure 32 The schematic diagram of the electronic part of the prosthesis

2.5.2 Design modifications in biomechatronic prosthesis

The final mechanical version of the prosthesis was first manufactured and tested by the patient to confirm its usefulness. Then, another set of requirements were introduced – namely, to be able to fit the electronics of the prosthesis inside it, in a manner allowing steady riding on a bicycle or similar device, without risk of disconnecting or otherwise damaging the components, as well as not making them disturb the patient during the activities.

The following main changes have been introduced to the design:

 the forearm was modified to enable mounting of the microcontroller, inertial sensor and SD card module inside cavities of the forearm – insets were created with holes, for self-tapping purposes (Figure 33)

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 28

Page | 29

Figure 33 Modified forearm – visible mounting places for electronic components

- at the joint of forearm and CRS socket, insets were added for mounting of the force sensor (beam) – the place (elbow) was selected to easily detect the torques and forces during the bicycle ride
- a number of assembly holes and cable feedthroughs were added to enable unproblematic assembly of the electronic part inside the prosthesis.

Final version of the CAD model of the prosthesis is shown in Figure 34.

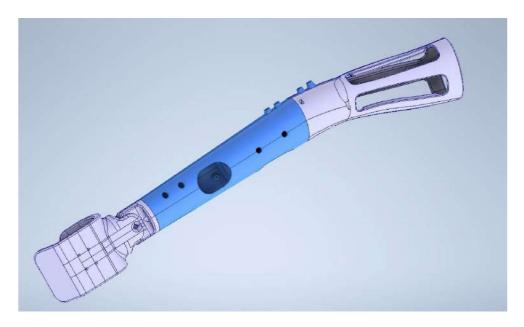


Figure 34 Final CAD model of the biomechatronic bicycle prosthesis

3 Summary

In this toolkit, it was shown how a modular model of a low-cost 3D printed bicycle prosthesis can be designed and then converted into a simple biomechatronic device, equipped with sensors for biometrics of the bicycle ride activity. The toolkit is a part of the set of instructions, focused on the prosthesis model. The resulting model was 3D printed in further steps and then assembled, tested in laboratory conditions and then in real conditions, with the patient – this is described in other toolkits of the EMERALD project.

Page | 30

Literature

- Górski, F., Wichniarek, R., Kuczko, W., Żukowska, M., Rybarczyk, J., & Lulkiewicz, M. (2022). Evaluation of a Prototype System of Automated Design and Rapid Manufacturing of Orthopaedic Supplies. In Advances in Manufacturing III: Volume 5-Biomedical Engineering: Research and Technology Innovations, Industry 4.0 (pp. 1-15). Cham: Springer International Publishing.
- Górski, F., Wichniarek, R., Kuczko, W., & Żukowska, M. (2021). Study on properties of automatically designed 3d-printed customized prosthetic sockets. Materials, 14(18), 5240.
- 3. Komorowska O., 2022, Automation of design of modular upper limb prosthesis, Master's Thesis (supervision: Górski F.), Poznan University of Technology
- 4. Słupińska S., 2021, Automation of design of low-cost upper limb cosmetic prostheses, Master's Thesis (supervision: Górski F.), Poznan University of Technology

EMERALD

Page | 31

The Education, Scholarships, Apprenticeships and Youth Entrepreneurship

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC

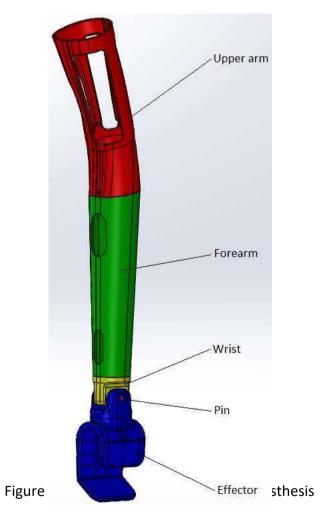
MECHATRONIC SYSTEMS

E-toolkit Computer Aided Engineering

Project Title	European network for 3D printing of biomimetic mechatronic systems 21-COP-0019
Output	O2 – E-toolkit for teaching purposes, basic knowledge about realizing biomimetic mechatronic systems
Module	Computer Aided Engineering (CAE)
Authors	Dan-Sorin COMȘA, Răzvan PĂCURAR

Contents

1.	Introduction	33 Page
	Preparation of the finite element model	
3.	Interpretation of the numerical results	59
4.	Suggestions for individual work	67
Re	ferences	68



1. Introduction

The objective of this application is to evaluate the strength characteristics of an upper-limb Page prosthesis (Fig. 1) by simulating a distal tensile test with the finite element analysis (FEA) module SolidWorks Simulation [WWW2022b] included in the SolidWorks CAD package [WWW2022a]. The principle of the test is shown in Figure 2. As one may notice, the prosthesis is subjected to a distal traction load after being firmly attached to a rigid support that fits inner surfaces of the upper arm. The traction load gradually increases from 0 (zero) to 750 N.

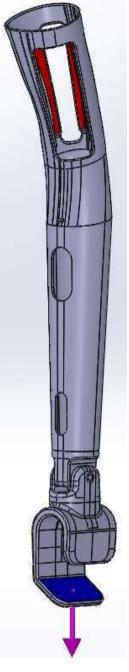


Figure 2: Principle of the distal tensile test simulated for evaluating the strength characteristics of the upper-limb prosthesis (red surfaces – regions where the upper arm is firmly attached to a rigid support; blue surface – support of the traction load)

This project has been funded with support from the Iceland Liechenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 34

Page

| 35

The following hypotheses are adopted when preparing the finite element model of the tensile test:

• The prosthesis components are made of PETG exhibiting an isotropic linear elastic behavior. Table 1 lists the physical and mechanical properties of this material that are relevant for the finite element model of the tensile test.

The prosthesis components are bonded together along their contact surfaces.

Table 1: Physical and mechanical properties of PETG [Kan2020]

Mass density	Elastic modulus	Poisson's ratio	Yield strength		
ρ [kg/m³]	<i>E</i> [MPa]	v [-]	Y [MPa]		
1270	1660	0.419	30.3		

The input files needed for preparing the finite element model of the tensile test are stored in the folder *Upper-limb prosthesis FEA*:

Upper arm.SLDPRT	 – 3D model of the upper arm (Fig. 1)
Forearm.SLDPRT	 – 3D model of the forearm (Fig. 1)
Wrist.SLDPRT	 – 3D model of the wrist (Fig. 1)
Effector.SLDPRT	 – 3D model of the effector (Fig. 1)
Pin.SLDPRT	– 3D model of the pin (Fig. 1)
Upper-limb prosthesis.SLDASM	 – 3D model of the prosthesis (Fig. 1)
EMERALD CAE Materials.sldmat	t – custom library storing the physical and mechanical
	properties of PETG listed in Table 1.

The selection set *Selection-Set1(10) Upper arm - Fixed* (defined in the file *Upper-limb prosthesis.SLDASM*) collects the surfaces where the upper arm is firmly attached to the rigid support.

The displacement (deflection), force and stress quantities manipulated by the FEA model are expressed using the following measurement units: displacement (deflection) – millimeter [mm]; force – Newton [N]; stress – megapascal [MPa] (1 MPa = 1 N/mm²).

The next sections of this documentation describe the preparation of the FEA model and the interpretation of the numerical results.

Working together for a green, competitive and inclusive Europe

2. Preparation of the finite element model

The FEA model of the tensile test (Fig. 2) is developed by performing the following steps:

a) Open the Upper-limb prosthesis.SLDASM model in SolidWorks (Fig. 3).

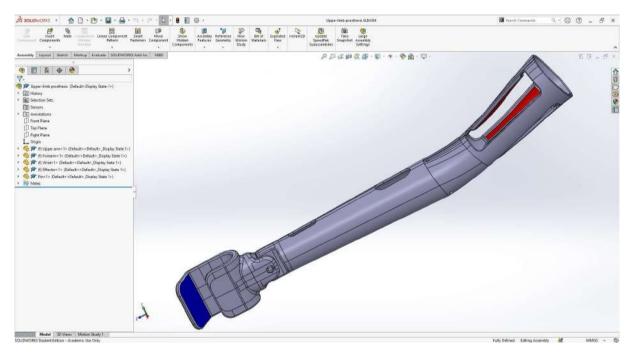


Figure 3: *Upper-limb prosthesis.SLDASM* model open in SolidWorks

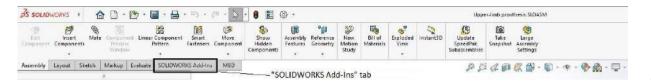
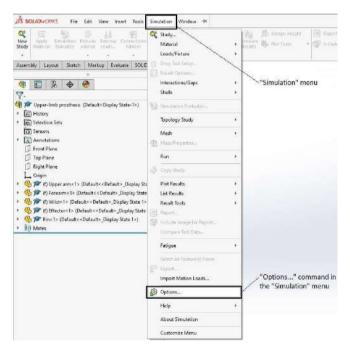

- b) Activate the SolidWorks Simulation module by accessing the "SOLIDWORKS Add-Ins" tab of the "Command Manager" toolbar (Fig. 4) and pressing the "SOLIDWORKS Simulation" button (Fig. 5). Consequently, the "Simulation" tab is included in the "Command Manager" toolbar (Fig. 6).
- c) Change some working parameters of the SolidWorks Simulation module by accessing the "Simulation" menu and selecting the "Options..." command (Fig. 7). Consequently, the "System Options – General" window is displayed. In the "Default Options" panel, select the SI (MKS) unit system, then change the following measurement units: length/displacement [mm] and pressure/stress [N/mm²] (Fig. 8).

Figure 4: "SOLIDWORKS Add-Ins" tab in the "Command Manager" toolbar


Page | 37

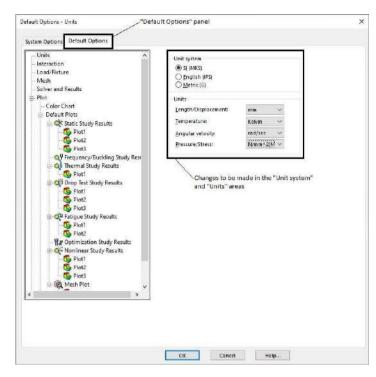
às solidi	IORKS +		• 🕑 •	· .	$ 0\rangle = \sqrt{2}$	· D · 0		•				Upper-limb prosthesis.SLDASM	
GircuitWorks	PhotoView 360	ScanTo3D	SOUDWORKS Mation	SOLIDWORKS Routing	SOUDWORKS Simulation	SOUDWORKS Toolbox	EI TolAnalyst	SOLIDWORKS Flow Simulation	SOUDWORKS Plastics	EN SOLDWORKS Insection	SOUDWORKS ARED LOIL		
Assembly	Layout 5	ketch Ma	rkup Evaluat	e SOLIDWOR	IKS Add-Ins	MBD			Simulation RKS Add-II			₽₽₡₽₡₽੶₽੶₹੶\$\$&-₽	

Figure 5: "SOLIDWORKS Simulation" button in the "SOLIDWORKS Add-Ins" toolbar

3s sc	LIDWOR	KS +	â 🕻	- 🖄	• 🗐 - (3 • •	- (1	- 🔯 •	8 📰	(i) ·			Upper-limb prosthesis.SLDASM
Q New Study	Apply Material	Simulation Bialuator	() Fistures Adneor	18 External Loods	Connections Admine	Shet Monager	Euro Theo Shotly	Results Advisor	nie Definitied Result		 Design Indight Plot Table 	• 🕼 Report	बुद्धेः Official Staulution ब्रह्मेः Manage Tetwork
۴.				*	100		1	12		1-			
ssemi	oly Laya	out Sketo	h Mark	up Eval	luate SOLID	WORKS Ad	Id-Ins SI	imulation	MBD				🌮 🏳 🦧 📁 🌾 🗊 - 🗊 - 🌵 - 🔶 🏡 - 🗔 and Manager'' toolbar
									12000	"S	imulation" tab	included in the "Comma	and Manager" toolbar

Figure 6: "Simulation" tab included in the "Command Manager" toolbar after the activation of the SolidWorks Simulation module

Figure 7: "Options..." command in the "Simulation" menu



Working together for a green, competitive and inclusive Europe

Page | 38

Figure 8: Changes to be made in the "Default Options" panel of the "System Options – General" window

- d) Add the folder Upper-limb prosthesis FEA to the list of places where SolidWorks looks for material libraries by accessing the "Tools" menu and selecting the "Options..." command (Fig. 9). Consequently, the "System Options General" window is displayed. In the "System Options" panel, select the "File Locations" entry (Fig. 10). Unroll the "Show folders for:" drop-down list and select the "Material Databases" item (Fig. 11). After pressing the "Add..." button (Fig. 12), the "Select Folder" window is displayed on the screen (Fig. 13). Look for the folder Upper-limb prosthesis FEA, select it and press the "Select Folder" button placed at the bottom of the "System Options General" window (Fig. 13). Press the "OK" buttonplaced at the bottom of the "System Options General" window (Fig. 14).
- e) Enter the "Simulation" toolbar and press the "New Study" button (Fig. 15) to create a FEA model having the following characteristics (Fig. 16):
 - name of the FEA model: "Static 1"
 - type of the FEA model: "Static".

Press the "OK" button placed at the upper-left corner of the "Study" window (Fig. 16).

Working together for a green, competitive and inclusive Europe

ew Apply Simulation Fixtures External Con	Export To AEC	Compare Plot Tools • 🗐 Include
udy Material Evaluator Advisor Loads Ai	Select	Results
sembly Layout Sketch Markup Evaluate	A Magnified Selection	
0	Box Selection	
🖲 🖪 🛱 🗢	9 Lasso Selection	"Tools" menu
	Select over Geometry	
P Upper-limb prosthesis (Default <display state<br="">History</display>	Select All Ctrl+A Invert Selection	
Selection Sets Sensors	Compare 🔸	
Annotations	Find/Modify	
Front Plane	Design Checker 🔹 🕨	
Top Plane	🚀 Format Painter	
📫 Right Plane	Component Selection	
└→ Origin	Component >	
() opper and the (berault < Default < Default >_Dip (f) Forearm <1> (Default < Default >_Dip	Sketch Entities	
🖐 🎓 (f) Wrist<1> (Default< <default>_Display</default>	Sketch Tools	
(f) Effector<1> (Default< <default>_Displ</default>	Sketch Settings >	
Pin<1> (Default< <default>_Display State</default>	Blocks >	
00 Mates	Spline Tools 🔹 🕨	
	Dimensions 🕨	
	Relations	
	MBD Dimension	
	Reorganize Components	
	∑ Equations	
	🔊 Symmetry Check	
	Large Assembly Settings	
	縃 Make Smart Component	
	Macro >	
	Evaluate >	
	Add-Ins	/ "Options" command in
	Save/Restore Settings	the "Tools" menu
	Customize	
	Options	
	Customize Menu	

Figure 9: "Options..." command in the "Tools" menu

This project has been funded with support from the Iceland Liechenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 39

Working together for a green, competitive and inclusive Europe

Page | 40

System Options Document P	roperties	🚱 Search Options	Q
General MBD Drawings 	Recent documents Maximum recent documents displayed: 50 Include documents opened from other documents Open last used document(s) at startup: Never Input dimension value Single command per pick Show thumbnail graphics in Windows Explorer. Restore File Associations Use system separator for gimensions Use English language menus Use System separator for gimensions Auto-show PropertyManager Auto-show PropertyManager Auto-show PropertyManager when panels are split Automatically edit macro after recording Stop VSTA debugger on macro exit Enable Freeze bar When rebuild error occurs: Prompt		
File Explorer Search Collaboration Messages/Errors/Warnings Import Export Export	Custom property used as component description: Description Show Jatest Technical Alerts and News in Welcome dialog Check for solutions when SOLIDWORKS crashes Enable sounds for SOLIDWORKS events Configure Sounds Allow cosmetic threads for upgrade. SOLIDWORKS Customer Experience Improvement Program Tell me more. Help make SOLIDWORKS products better by automatically sending your log file DS SolidWorks Cornoration	es to	

Figure 10: "File Locations" entry in the "System Options" panel of the "System Options – General" window

Working together for a green, competitive and inclusive Europe

Page | 41

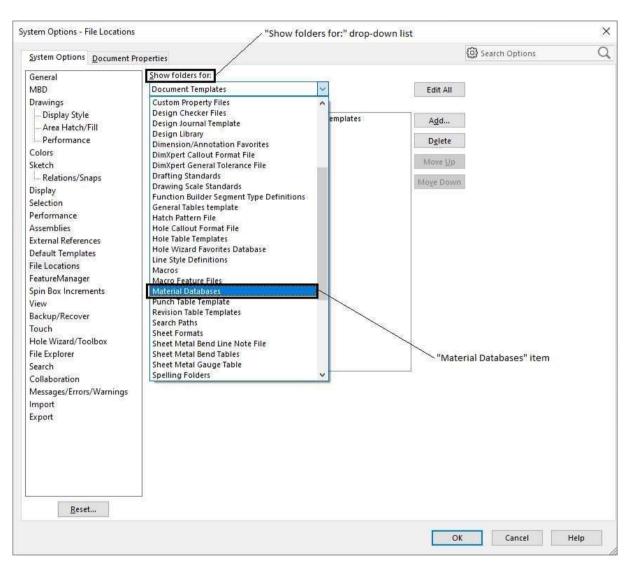


Figure 11: "Material Databases" item in the "Show folders for:" list

Working together for a green, competitive and inclusive Europe

System Options Document Pr	operties	Search Options	Q
writen Options <u>Document</u> Pi General MBD Drawings - Display Style - Area Hatch/Fill - Performance Colors Stetch - Relations/Snaps Display Selection Performance	Show folders for: Natritik Databases Eolders: C:ProgramData/SoliDWORKS Corp/SOLIDWORKSJanglenglishistenate C:ProgramData/SolidWorks/SolidWorks 2021/Sustainability C:ProgramData/SolidWorks/SolidWorks 2021/Sustainability	Edit All Agd" button Digitific fore Lip ere Down	5
Assemblics External References Default Templates File Locations File Locations Spin Box Increments View Backtup/Resover Touch Hole Wizerd/Toolbox File Explorer			
Search Collaboration Messages/Errors/Warnings Import Export	Content of the second and the second		
Reset			

Page | 42

Figure 12: "Add..." button to be pressed for modifying the list of places where SolidWorks looks for material libraries

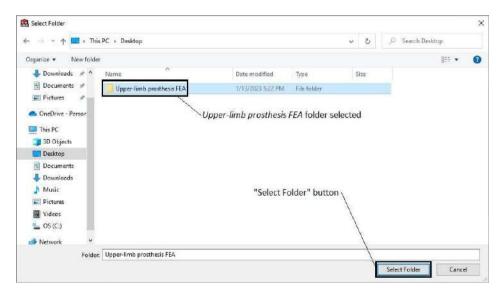
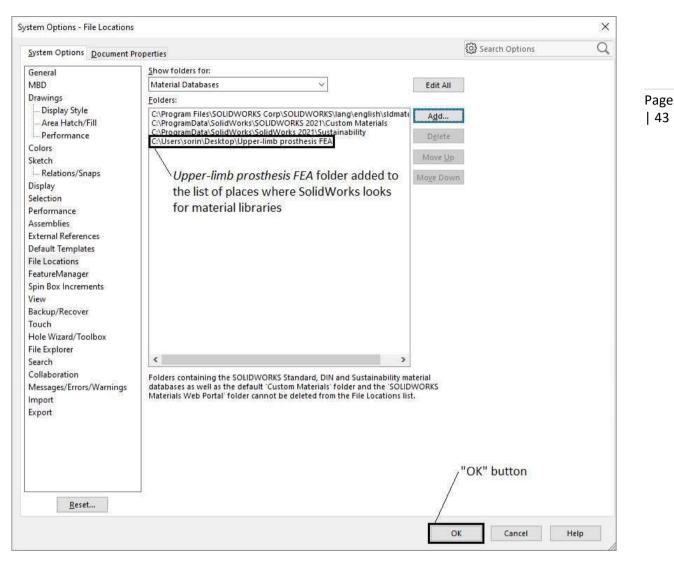


Figure 13: Selecting the folder *Upper-limb prosthesis FEA* for being added to the list of places where SolidWorks looks for material libraries

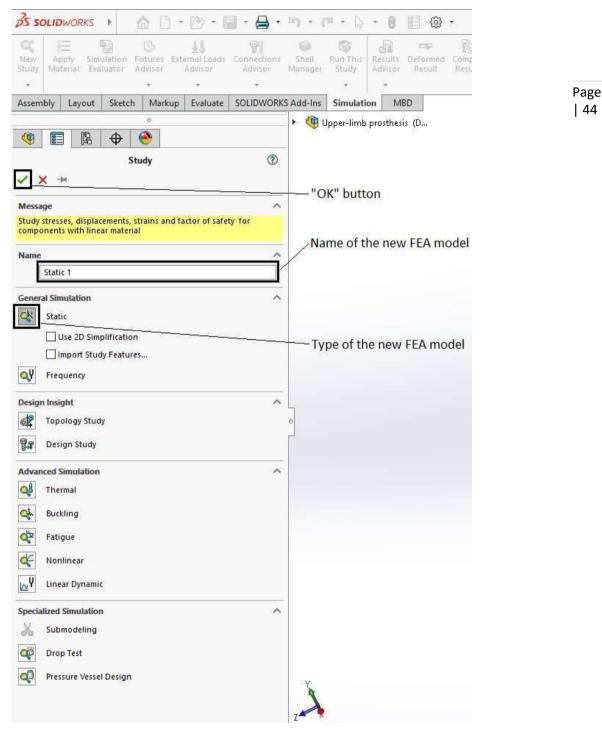


Working together for a green, competitive and inclusive Europe

Figure 14: Folder Upper-limb prosthesis FEA included in the list of places where SolidWorks looks for material libraries

35 sc	DLIDWORKS +	â 🗋 · 🖻	7 - 🗐 - 🤅	• (0) •	@ · D	8 2	@ ·			Upper-limb prosthes is SLDASM *
New Study	Apply Simulation Material Linkinter	Teturat External Advisor Lobert	Somethorn Advitor	Shell Bur Manager G	CTALL CTALL Day Advisor	trup Deformed Hesuit	Company Results	房) Design Insight 制y Pol Tools	Hepoit:	Byb. (Dffooded Similation The Manage Network
Assem	bly Layout Sketch	Markup Ex	aluate_SOLID	WORKS Add-In	Simulation		utton ir	n the "Simulation	" toolbar	₽₽₽₽₽₽-₽-₽-₽₽₽₽₽
()		0		>	iicu .	cooy o	acconn	Tele Sindadon	1001041	

Figure 15: Creation of a new FEA model



Working together for a green, competitive and inclusive Europe

Figure 16: Defining the name and type of the new FEA model


Working together for a green, competitive and inclusive Europe

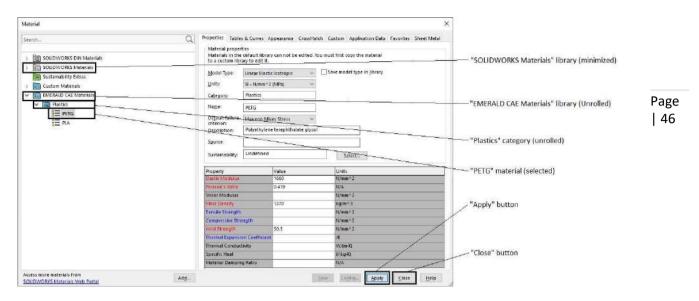
f) Press the right button of the mouse on the "Parts" entry of the FEA tree and select the "Apply Material to All..." command from the drop-down menu to define the material properties of the prosthesis components (Fig. 17). Consequently, the "Material" window is displayed (Fig. 18). In that window, minimize the "SOLIDWORKS Materials" library, unroll the "EMERALD CAE Materials" library, unroll the "Plastics" category, select the "PETG" material, then press the buttons "Apply" and "Close" placed at the bottom of the "Material" window.

Page | 45

Note: The yield strength Y = 30.3 MPa (see the PETG material data listed in Table 1 and Figure 18) defines the upper limit of the von Mises equivalent stress that can be supported by the prosthesis components.

g) Do not change the option "Global Interaction (-Bonded-Meshed Independently-)" activated by default under the "Connections" and "Component Interactions" entries of the FEA tree (Fig. 19). This option is consistent with the hypotheses formulated in §1.

Figure 17: Defining the material properties of the prosthesis components

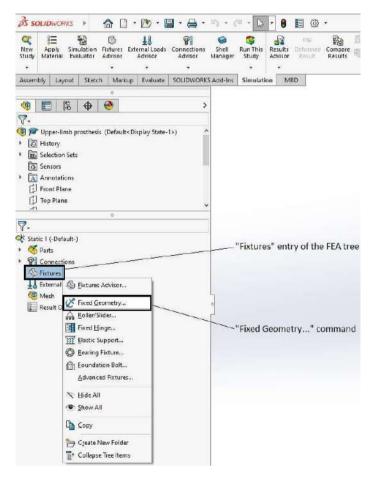


Working together for a green, competitive and inclusive Europe

Figure 18: Associating the PETG material to the prosthesis components

3s so	DLIDV	VORKS	Þ		D • 🖄	· 🗐 · 🔒 ·	· 12) · · ·	- 3	- 0	E ©	•			
New Study	App Mate		ulation aluator	Fixture Adviso	s External Lo r Advisor		Shell Manager	Run This Study	Results Adviso		Compare Results	🔊 Design Insigh		🗐 Repi
Assem	bly	Layout	Sketo	h Ma	irkup Evalu	ate SOLIDWOR	KS Add-Ins	Simulati	on N	/IBD				
	_	MA	+	0										
€		毘	Ф	۲			>							
・ 回日 ・ 日日 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Senso Anno Front Top F	otations : Plane Plane Default-)		0			*	"Conn	ection	ns" entry	y of the	FEA tree		
• 🔏 • <table-cell></table-cell>	80	ections Compone				ed independently						subentry of th	e FE	A tree
	Fixtur Extern Mesh	res nal Load	5			ansuoa n		~ Conta	ct opt	ion to be	e left un	changed		

Figure 19: Contact option activated by default in the FEA tree (to be left unchanged)



Working together for a green, competitive and inclusive Europe

 h) Press the right button of the mouse on the "Fixtures" entry of the FEA tree and select the "Fixed Geometry..." command in the drop-down menu (Fig. 20). Perform the following actions in the "Fixture" dialogue box to define a full locking boundary condition on some inner surfaces of the upper arm (Fig. 21):

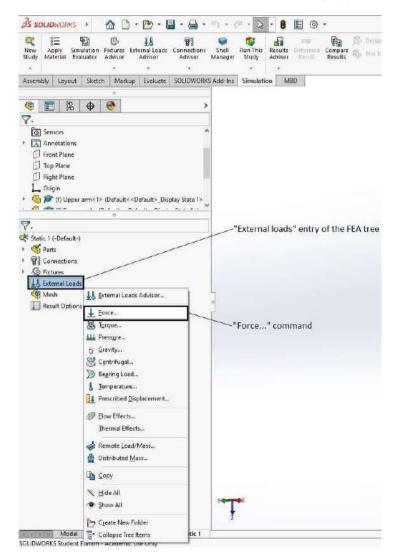
Page | 47

- Press the left button of the mouse in the "Faces, Edges, Vertices for Fixture" selection box of the "Fixture" dialogue box
- Unroll the assembly tree placed at the upper-left corner of the SolidWorks graphics area
- Unroll the "Selection Sets" entry of the assembly tree
- Select "Selection-Set1(10) Upper arm Fixed" in the assembly tree
- Press the "OK" button of the "Fixture" dialogue box.

Figure 20: Defining full locking boundary conditions

Working together for a green, competitive and inclusive Europe

- Press the right button of the mouse on the "External Loads" entry of the FEA tree and select the "Force..." command in the drop-down menu (Fig. 22). Perform the following actions in the "Force/Torque" dialogue box to define the distal traction load that acts on the prosthesis (Fig. 23):
 - Activate the "Selected direction" radio button
 - Press the left button of the mouse in the "Faces, Edges, Vertices, Reference Points for Force" selection box
 - Select the blue surface of the prosthesis effector in the SolidWorks graphics area
 - Press the left button of the mouse in the "Face, Edge, Plane for Direction" selection box
 - Unroll the assembly tree placed at the upper-left corner of the SolidWorks graphics area



Page

| 49

- Select "Front Plane" in the assembly tree
- Press the "Normal to Plane" button in the "Force" region of the "Force/Torque" dialogue box
- Do not change the force value specified by default (1 N) in the "Normal to Plane" input box
- Press the "OK" button of the "Force/Torque" dialogue box.

Note: The actual values of the traction force are defined in step (k) as load cases.

Figure 22: Defining a force-type boundary condition

Working together for a green, competitive and inclusive Europe

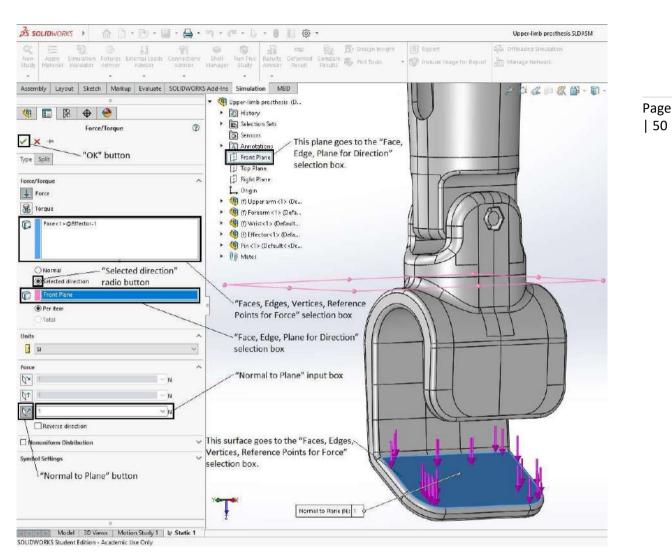


Figure 23: Defining the distal traction load that acts on the prosthesis

- j) Press the right button of the mouse on the "Mesh" entry of the FEA tree and select the "Create Mesh..." command in the drop-down menu (Fig. 24). Perform the following actions in the "Mesh" dialogue box to generate the finite element mesh (Fig. 25):
 - Move the "Mesh Factor" cursor to the "Fine" position
 - Press the "OK" button of the "Mesh" dialogue box.

Note: The finite element mesh generated by SolidWorks Simulation is shown in Figure 26.

Working together for a green, competitive and inclusive Europe

3s solid works ≪ ∷≣		୬ - 🔲 - 🚑 - U 🕅		- 5	E @ •	©a	
New Apply Sir Study Material Ev	mulation Fixtures Extern		Shell Run Th Manager Study	is Results		Compare Results	
*	The Adams 1		* •		00		Pa
ssembly Layout	Sketch Markup I	valuate SOLIDWORK	(S Add-Ins Simul	ation	BD		
9 E R	⊕ ●	>					
▼ <u>185 70</u> 7.			-				
Sensors			•				
Annotations							
Front Plane							
Top Plane							
Right Plane							
Crigin	r arm<1> (Default< <defa< td=""><td>ults Display State 15</td><td></td><td></td><td></td><td></td><td></td></defa<>	ults Display State 15					
			~				
9	0		T				
Static 1 (-Default K Parts	-)						
Connections			"Mes	h" entry	of the FE	A tree	
S Fixtures							
La External Load	ds						
Wesh Mesh	7	1					
Result 🚯 <u>N</u>	<u>/l</u> esh Advisor]				
ភ្នំក ទ	implify Model for Meshir	g					
6	I <u>r</u> eate Mesh						
N	Mesh and <u>R</u> un		"Crea	te Mesh	" comn	nand	
NG (pply Mesh Control						
	ailure <u>D</u> iagnostics						
)etails						
	Create <u>M</u> esh Quality Plot						
Q M	Mesh Quality Diagnostics.						
in F	lide All Mesh Control Syn	nbols					
👁 s	ho <u>w</u> All Mesh Control Sy	mbols					
	Сору						
and the second se	Collapse Tree Items						

Working together for a green, competitive and inclusive Europe

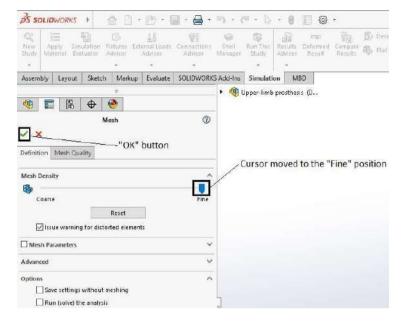
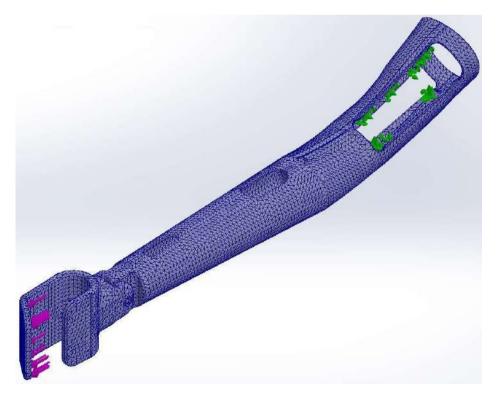



Figure 25: Defining the control parameters of the finite element mesh

This project has been funded with support from the Iceland Liechenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 52

k) Press the right button of the mouse on the root of the FEA tree and select the "Load Case Manager" command in the drop-down menu (Fig. 27). Consequently, the "Load Case View" tab is displayed at the bottom of the SolidWorks graphics area (Fig. 28). Perform the following actions in that tab to define the actual values of the traction load that acts on the prosthesis:

Page | 53

- Press the left button of the mouse in the box labeled "+ Click here to add a primary load case" to define the first load case (Fig. 29)
- Replace the "Suppress" status of the "Force-1" cell with 150 (Newton) i.e., the actual value of the pressure corresponding to "Load Case 1" (Fig. 29)
- Press the left button of the mouse in the box labeled "+ Click here to add a primary load case" to define the second load case (Fig. 29)
- Replace the "Suppress" status of the "Force-1" cell with 300 (Newton) i.e., the actual value of the pressure corresponding to "Load Case 2" (Fig. 30)
- Proceed in the same manner to define "Load Case 3": 450 N, "Load Case 4": 600 N, and "Load Case 5": 750 N (Fig. 31)
- Press the left button of the mouse in the box labeled "+ Click here to add a sensor to track a result" (Fig. 31)
- Select the "+ Add Sensor..." command in the drop-down list displayed at the bottom of the "Load Case View" tab (Fig. 32)
- Perform the following actions in the "Sensor" dialogue box to define a sensor for tracking the maximum value of the von Mises equivalent stress at the level of the entire FEA model (Fig. 33):
 - Select the option "Stress" from the "Results" drop-down list
 - Select the option "VON: von Mises Stress" from the "Component" drop-down list
 - Select the option "N/mm² (MPa)" from the "Units" drop-down list
 - Press the "OK" button placed at the upper-left corner of the "Sensor" dialogue
- Come back to the "Load Case View" tab and press again the left button of the mouse in the box labeled "+ Click here to add a sensor to track a result" (Fig. 34)
- Select the "+ Add Sensor..." command in the drop-down list displayed at the bottom of the "Load Case View" tab (Fig. 34)
- Perform the following actions in the "Sensor" dialogue box to define a new sensor for tracking the maximum deflection at the level of the entire FEA model (Fig. 35):

This project has been funded with support from the Iceland Liechenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Iceland

Liechtenstein

Norway grants

- Select the option "Displacement" from the "Results" drop-down list
- Select the option "URES: Resultant Displacement" from the "Component" drop-down list
- o Select the option "mm" from the "Units" drop-down list
- Press the "OK" button placed at the upper-left corner of the "Sensor" dialogue.

At this stage, the finite element model of the tensile test is prepared and transferred to the SolidWorks Simulation solver by pressing the "Run" button of the "Load Case View" tab (Fig. 36). The numerical results generated by the solver are interpreted in the next section.

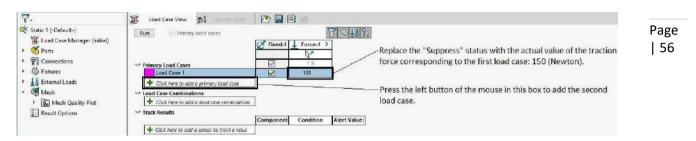
35 SOLIDWORKS) 👌 🗅 - 🗁 - 🗐	• 🖨 • 🖻 • (14 - 🕞 - 😫 😰 -
	Lation Fixtures External Connectuator Advisor Leads Advisor		
Assembly Layout	Sketch Markup Evaluate	SOLIDWORKS Add-Ins	Simulation MBD
	Sketch Markup Evaluate Image: State of the state of	> Mode Study Plot b	Simulation MBD el name: Upper-limb prothesis yname: Static 1(-Default-) spe: Mesh Quality1 - Root of the FEA tree / "Load Case Manager" command
	Rena <u>m</u> e <mark>X D</mark> elete		

Figure 27: Accessing the Load Case Manager

This project has been funded with support from the Iceland Liechenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 54

Figure 28: "Load Case View" tab displayed at the bottom of the SolidWorks graphics area



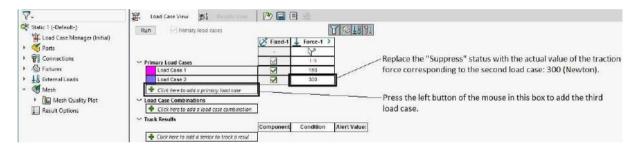


Figure 29: Defining the first load case (traction force of 150 N)

Figure 30: Defining the second load case (traction force of 300 N)

7.	😹 Load Case View 🔊 Hesuits View) 🕑 🖬 🗄	0		
 Static 1 (-Default-) Load Case Manager (Initial) Sparts Connections 	Run Primary load cases	Fixed-1	Force-1 >	19 18 11	
 S Fixtures 	Primary Load Cases	M			
	Load Case 1		150		
• 👪 External Loads	Load Case 2		300		
🔻 🥮 Mesh	Load Case 3		450		
Mesh Quality Plot	Load Case 4		600		
Result Options	Lond Case 5	M	750		
	Click here to add a primary load case				
	Load Case Combinations				
	Click here to add a load case combination	1			
	✓ Track Results				
		Component	Condition	Alert Value:	- Press the left button of the mouse in this box to add
	Click here to add a sensor to track a resul		فيسترك فلترك		a sensor for tracking the numerical results.

Figure 31: Actual values of the traction force defined as load cases

Working together for a green, competitive and inclusive Europe

Page | 57

🗸 - 🛠 Static 1 (-Default-)	Run Primary load cases			A 279 II
🎁 Load Case Manager (Initial)		K Fixed-1	<u></u>	
M Parts		Criacult	N/N	-
P Connections	✓ Primary Load Cases	M	1N	-
- Fixtures	Load Case 1		150	
↓ External Loads	Load Case 2	×	300	
Mesh Mesh	Load Case 3		450	
Mesh Quality Plot	Load Case 4		600	
Result Options	Load Case 5		750	
	💠 Click here to odd a primary load cose			
	Load Case Combinations			
	Click here to odd a load case combination			
	Sector Track Results			
		Component	Condition	Alert Value:
	💠 Click here to add a sensor to track a resul 🗸			"+ Add Sensor" command
	🛉 Add Sensor			

Figure 32: Initiating the definition of a sensor for tracking the numerical results

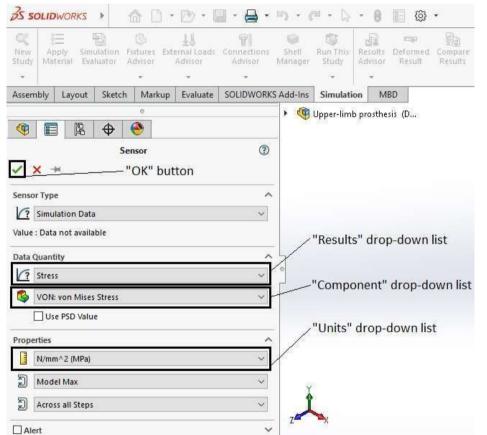


Figure 33: Definition of a sensor for tracking the maximum value of the von Mises equivalent stress at the level of the entire FEA model

Working together for a green, competitive and inclusive Europe

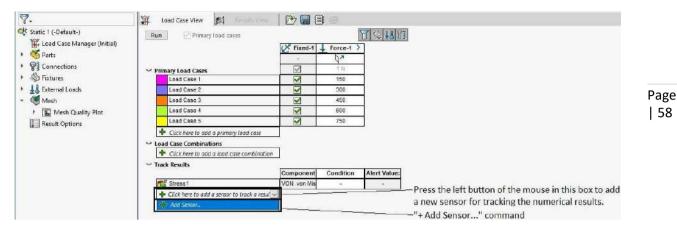


Figure 34: Initiating the definition of a new sensor for tracking the numerical results

35 SOLIDWORKS	6D.	12-1	- 🔒 -	¹²) - (²¹	a • 👂	- 0 1	63	.
New Study Simula Material Evaluation	stion Fixtures Ext	LS ernal Loads Advisor	Connections Advisor	Shell Manager	Run This Study		rap formed Result	Compan Results
* Assembly Layout	Sketch Markup	Evaluate	SOLIDWORK	Add Inc	Simulatio	m MBD		
Assembly Layout		Evaluate	SOLIDWORK.	-	And the second		(D)	
	⊕ (●)				Upper-limb) prosthesis	(U	
✓ × +		OK" but	ton ®					
Sensor Type			^	~				
Simulation Data			~					
Value : Data not available			/"	Results"	drop-do	own lis	st	
Data Quantity			^	/				
Displacement			~					
🗳 URES: Resultant Displacement 🗸 🗸			"Component" drop-down list					
Use PSD Value								
Properties			~					
mm			~					
) Model Max ~			"Units" drop-down list					
Across all Steps			~	Y				
Factor of Safety			~	Ĵ				
Alert			~	Z	***			

Figure 35: Definition of a sensor for tracking the maximum deflection at the level of the entire FEA model

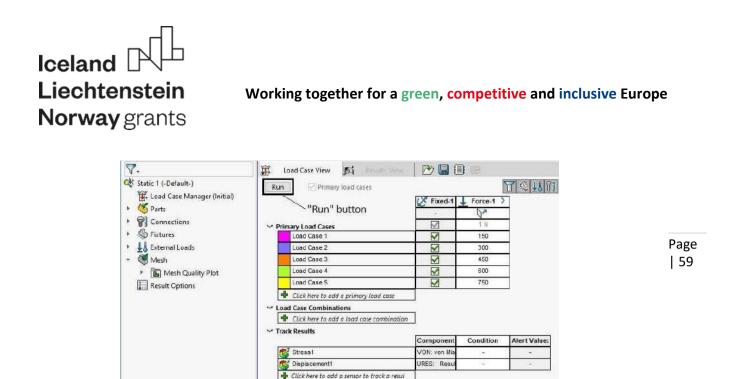


Figure 36: Transferring the finite element model to the SolidWorks Simulation solver

3. Interpretation of the numerical results

As soon as the solver finishes its job, the control is transferred to the "Results View" tab which is displayed at the bottom of the graphics area. At the same time, a color map showing the distribution of the von Mises equivalent stress at the level of the entire assembly appears on the screen (Fig. 37). This distribution corresponds to the first load case. The user can explore the other load cases by selecting them with the left button of the mouse in the first column of the "Primary Load Cases" table placed at the bottom of the "Results View" tab (see Figure 37, as well as the examples shown in Figures 38 and 39).

Perform the following actions to display the distribution of the deflection at the level of the entire assembly:

- a) Press the right button of the mouse on the item "Displacement1 (-Res disp-)" under the "Load Case Results" entry of the FEA tree, and select the "Show" command in the dropdown menu to examine the distribution of the deflection (Fig. 40)
- b) Examine the distribution of the deflection associated to different load cases by selecting them with the left button of the mouse in the first column of the "Primary Load Cases" table placed at the bottom of the "Results View" tab (see the examples shown in Figures 41 and 42).

Working together for a green, competitive and inclusive Europe

Page | 60

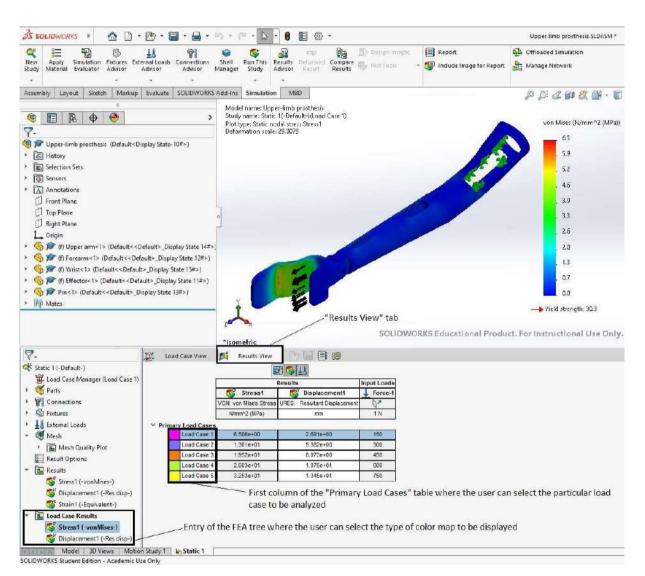


Figure 37: Analyzing the numerical results associated to different load cases with the help of the "Results View" tab and the "Load Case Results" entry of the FEA tree

Working together for a green, competitive and inclusive Europe

Page | 61

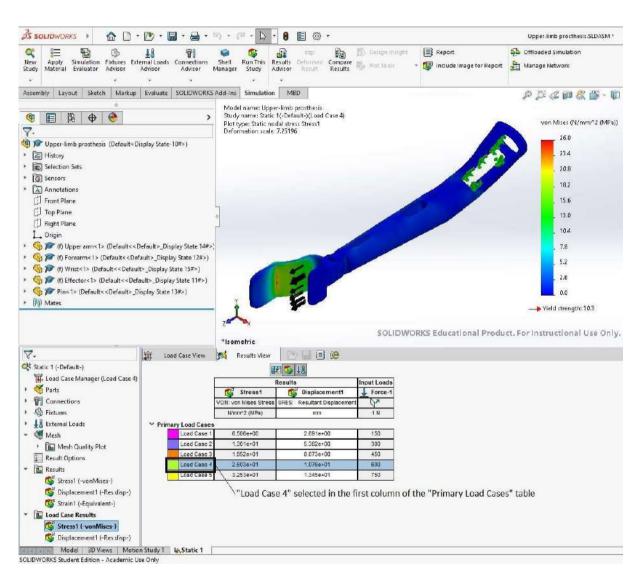


Figure 38: Color map showing the distribution of the von Mises equivalent stress at the level of the entire assembly (fourth load case: traction force of 600 N)

Working together for a green, competitive and inclusive Europe

Page | 62

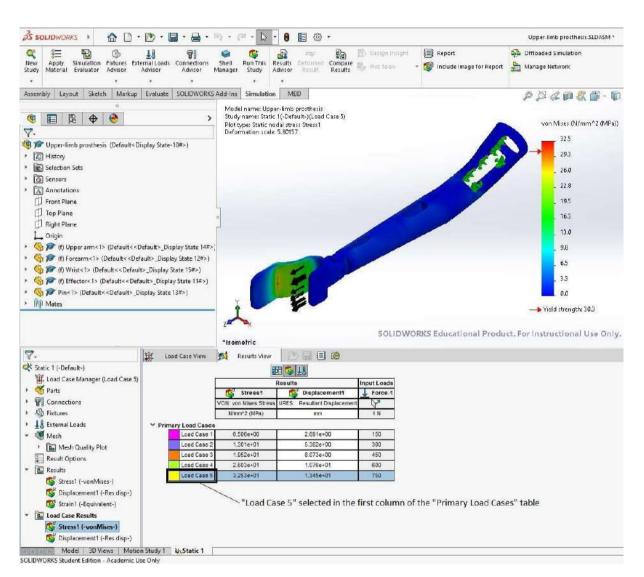


Figure 39: Color map showing the distribution of the von Mises equivalent stress at the level of the entire assembly (fifth load case: traction force of 750 N)

Working together for a green, competitive and inclusive Europe

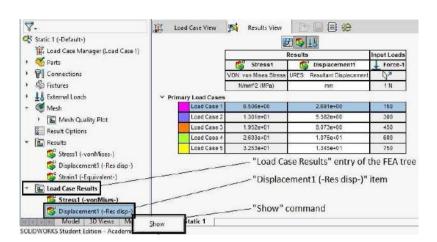


Figure 40: Selecting the distribution of the deflection to be examined

The maximum value of the von Mises equivalent stress $\sigma_{eq,max}$, the maximum deflection d_{max} , and the traction force *F* corresponding to different load cases are listed in the second, third and fourth column of the "Primary Load Cases" table placed at the bottom of the "Results View" tab (Fig. 43). Table 2 (see below) presents this data in a more readable format.

The plots in Figures 44 and 45 show the dependencies $\sigma_{eq,max}$ vs F and d_{max} vs F, respectively. Both diagrams allow noticing that the mechanical response of the prosthesis is linear. In fact, the dependencies $\sigma_{eq,max}$ vs F and d_{max} vs F are well approximated by the regressions

$$\sigma_{\rm eq,max} = 4.337 \cdot 10^{-2} \cdot F,$$
 (1)

and

$$d_{\max} = 1.794 \cdot 10^{-2} \cdot F, \tag{2}$$

respectively (see the black lines in Figures 44 and 45).

It can be easily seen in Table 2 and Figure 44 that $\sigma_{eq,max}$ equals the yield strength of the PETG material Y = 30.3 MPa (as defined in the *EMERALD CAE Materials.sldmat* library – see Table 1 and Figure 18) for a traction force 600 N < F_{cr} < 750 N. This critical load results from Eq (1) as soon as the replacement $\sigma_{eq,max}$ = Y = 30.3 MPa is made:

$$F_{\rm cr} = Y \cdot 100 / 4.337 = 30.3 \cdot 100 / 4.337 = 698.64 \,\mathrm{N}.$$
 (3)

This project has been funded with support from the Iceland Liechenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 63

Working together for a green, competitive and inclusive Europe

Page | 64

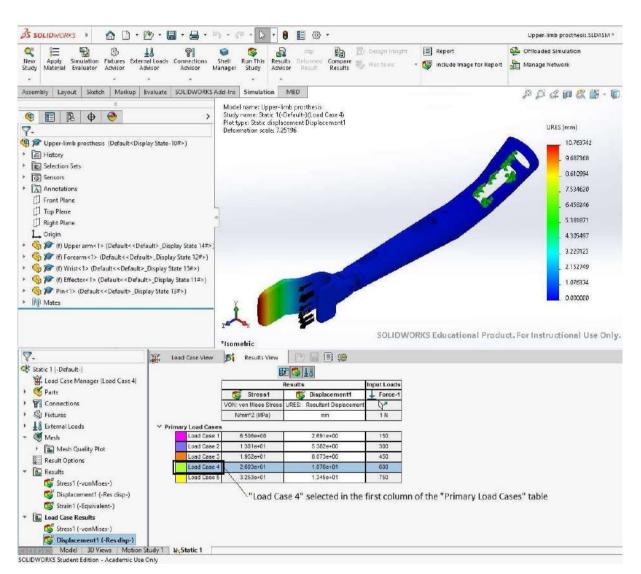


Figure 41: Color map showing the distribution of the deflection at the level of the entire assembly (fourth load case: traction force of 600 N)

Working together for a green, competitive and inclusive Europe

Page | 65

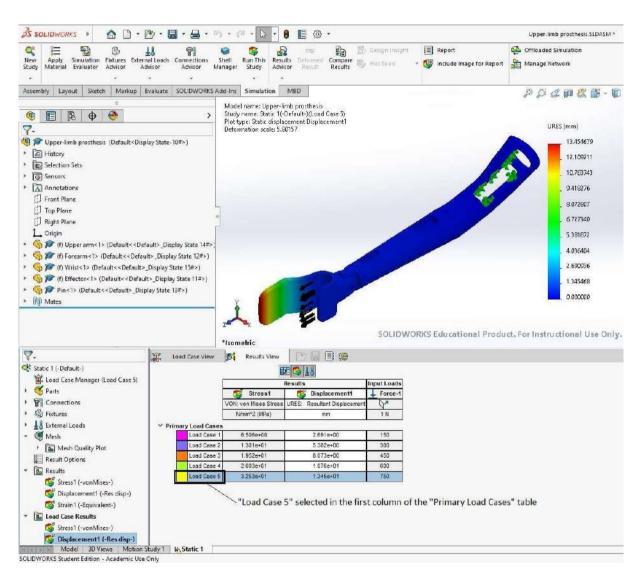


Figure 42: Color map showing the distribution of the deflection at the level of the entire assembly (fifth load case: traction force of 750 N)

Working together for a green, competitive and inclusive Europe

Page

| 66

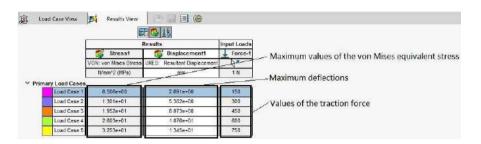
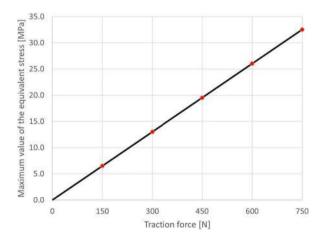
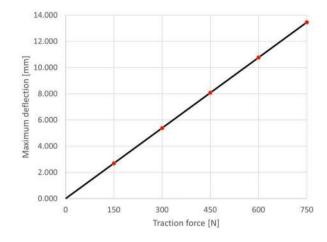



Figure 43: Maximum value of the von Mises equivalent stress, maximum deflection, and traction force corresponding to different load cases listed in the "Primary Load Cases" table

Table 2: Traction force, maximum value of the von Mises equivalent stress, and maximum deflection corresponding to different load cases (see also Figure 43)

Load case	Traction force	Maximum value of the von Mises	Maximum deflection
Load case	<i>F</i> [N]	equivalent stress $\sigma_{ m eq,max}$ [MPa]	d _{max} [mm]
1	150	6.51	2.691
2	300	13.01	5.382
3	450	19.52	8.073
4	600	26.03	10.764
5	750	32.53	13.455

Figure 44: Dependence $\sigma_{eq,max}$ vs *F*: red dots – numerical results taken from Table 2; black line – linear regression defined by Eq (1)



Working together for a green, competitive and inclusive Europe

Page | 67

Figure 45: Dependence d_{max} vs F: red dots – numerical results taken from Table 2; black line – linear regression defined by Eq (2)

4. Suggestions for individual work

a) Evaluate the strength characteristics of the upper-limb prosthesis by simulating the distal tensile test under the hypothesis that all the components are made of PLA exhibiting an isotropic linear elastic behavior. Table 3 lists the physical and mechanical properties of this material that are relevant for the finite element model.

Table 3: Physical and mechanical properties of PLA [Far2016]

Mass density	Elastic modulus	Poisson's ratio	Yield strength
ho [kg/m ³]	<i>E</i> [MPa]	v [-]	Y [MPa]
1252	3500	0.36	59

Note: The properties listed in Table 3 are stored in the custom library *EMERALD CAE Materials.sldmat.*

b) Develop another design of the upper-limb prosthesis and evaluate its strength characteristics by simulating the distal tensile test.

References

- [Far2016] Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, | 68 and their functions in widespread applications — A comprehensive review. *Advanced Drug Delivery Reviews* 2016, 107, 367-392. [https://doi.org/10.1016/j.addr.2016.06.012]
- [Kan2020] Kannan, S.; Ramamoorthy, M.; Sudhagar, E.; Gunji, B. Mechanical characterization and vibrational analysis of 3D printed PETG and PETG reinforced with short carbon fiber. In Proceedings of the International Conference on Physics and Chemistry of Materials in Novel Engineering Applications PCMNEA2020 (AIP Conference Proceedings 2270), Coimbatore, India, 6-7 February 2020; 030004. [https://doi.org/10.1063/5.0019362]

[WWW2022a] https://www.solidworks.com/

[WWW2022b] https://www.solidworks.com/product/solidworks-simulation

EMERALD

Page Is and Youth 169

The Education, Scholarships, Apprenticeships and Youth Entrepreneurship

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC

MECHATRONIC SYSTEMS

E-toolkit – 3D PRINTING

Project Title	European network for 3D printing of biomimetic mechatronic systems 21-COP-0019
Output	O2 - EMERALD e-toolkit manual for digital learning in producing biomimetic manufacturing method
Module	3D Printing
Authors	Diana BĂILĂ

Contents

1 Product 1: Personalized Orthosis

2 Product 2: Robotic Arm

2.1	CAD Modeling	.86
2.2	STL file	88
2.3	3D Printing software's	.89

3 Product 3: 3D Fresh Printing of organ phantom for surgical applications

	3.1	CAD Modeling	98
	3.2	STL file	99
	3.3	3D Printing software's	100
4		lusions	
5	Refe	rences	110

1 3D Printing toolkit for medical applications

Product 1: Personalized Orthosis – SLDPRT. file Poznan University of Technology Partner

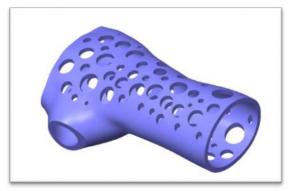


Fig.1. Personalised orthosis

1.1. CAD Modeling

CAD modeling is used by many designers to create elaborate computerized models of objects before they are physically produced. CAD stands for computer-aided design. Engineers, architects, and even artists utilize computers to assist in their design projects. Computers allow them to visualize their designs and confront problems before they have expended any of the resources necessary to put them into physical form. [1-88]

CAD modeling takes many different forms depending on the type of project. Some models are simple two-dimensional representations of various views of an object. Others are elaborate three-dimensional cross-sections that show every detail in great depth. Some CAD models are even animated, showing how all of the components of the model work together to complete its function.

Many different professions make use of computer-aided design. It is an important industrial art involved in automotive, aerospace, prosthetic, and artistic designs. The use of CAD modeling is massively widespread; anything from chairs to rockets can be designed with the aid of computer programs. Among other titles, CAD modelers are referred to as CAD monkeys,

designers, and digital information engineers. A single CAD file, can be made, edited and continually tweaked until the object is ready for production.

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

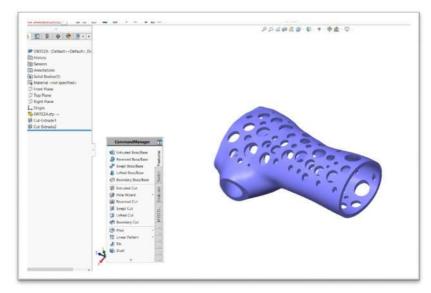


Fig.2. SolidWorks – SLDPRT. file

SolidWorks is a solid modeling computer-aided design (CAD) and computer-aided engineering (CAE) application published by Dassault Systèmes, as in figure 2. [1]

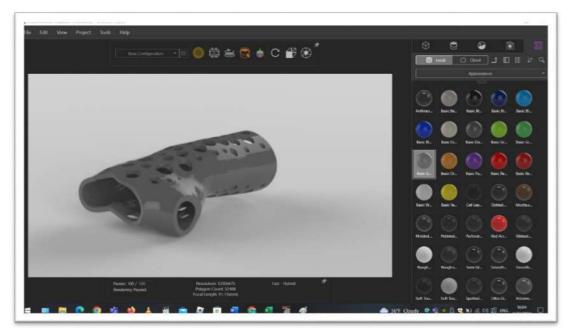


Fig.3. SolidWorks Visualize 2019 - orthosis with different texture mapping

The CAD software permits to realize the three-dimensional models using different geometric entities such as, lines, rectangle, curves surfaces interconnected to a multitude of points in 3D space.

The 3D models can be realized by algorithms, using CAD software or by Reverse Engineering using a 3D scanner that collects information's concerning the dimensions and the 3D shape of the object. SolidWorks Visualize 2019 permits their surfaces to be further defined with texture mapping, as in figure 3 [1].

1.2. STL file

To design the personalised orthosis, it was starting a new work session in SolidWorks, on click "Part", because it's a single design component. After design the personalised orthosis, it will be saved with name "Personalised Orthosis", in SLDPRT format. For manufacture using 3D Printing technology, the solid part is converted in STL file, and it will be saved such as .stl and must to choose from properties menu the resolution (coarse, fine or custom) and it was choose fine quality for meshing the product, such in Figure 4. Total triangles are 52426 used for meshing.[1-88]

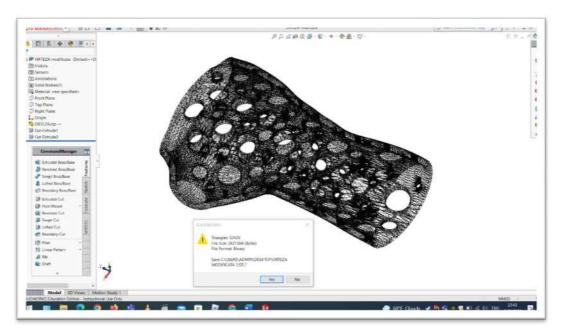


Fig.4.Orthosis meshing – STL. file

Iceland Liechtenstein Norway grants

Working together for a green, competitive and inclusive Europe

1.3. 3D Printing software's

Additive Prototyping Technologies (AM) differ fundamentally from material removal processing technologies (cutting, EDM, laser processing) and redistribution processing technologies material (casting, injection, forging, stamping) by the fact that the parts are obtained by adding layer by layer material using a CAD file.

These technologies have emerged grace a result of the achievements and advances made in the field of fine mechanics, numerical control, laser technology, computers, software, and the new materials development.

The specificity of these additive manufacturing processes is their ability to make parts and complex three-dimensional objects, starting from a CAD file, without the need for it use of machine tools or certain tools. The basic element of prototype additive manufacturing technologies is "the section". [1-86]

The pieces are quantified in sections and made using a repetitive process of construction, section by section, reducing a three-dimensional problem to one flat. This dimensional reduction leads to a decrease in accuracy and quality surfaces due to the scale effect.

The steps required for the additive manufacturing of a part are as follows:

-designing the three-dimensional (3D) model of the part, using a design program computer aided (CAD);

-transferring the CAD model to the sectioning processor. The best-known method of sectioning is the approximation of the model with flat triangular elements.

- sectioning the 3D virtual model with parallel planes to the working plane of the rapid manufacturing machine of prototypes and generation of orders for control equipment of the machine.

-the construction of the part (material, supports required during the model, how will be added a new layer, marking the contours for each section, marking the area between the exterior and interior contour of a section.

- cleaning and finishing of the part (operations in which the supports used at construction and excess material are eliminated).[1-88]

Regarding solid CAD modelling, Additive Manufacturing systems are becoming an important and motivating factor for companies that produce solid modelling systems, such as: Solidworks, Unigraphics, I-DEAS, Catia, Inventor, Onshape, AutoCAD, Pro / Engineer, etc

Iceland Liechtenstein Norway grants

Working together for a green, competitive and inclusive Europe

The best software used by FDM (Fused Deposition Modeling) printers are Ultimaker Cura, BCN 3D Cura, Voxelizer, Z-Suite, etc and for SLA (Stereolithography)/DLP (Digital Light Processing) printers are FormLabs, Photocentric, etc.

Using https://ultimaker.com/en/resources/manuals/software and downloaded free software <u>https://ultimaker.com/en/products/ultimaker-cura-software</u>, than it must to obtain the g-code file necessary to print the part. The first step consist in open Ultimaker Cura software and to introduce by drag the part, as stl.file, such in the Figure 5. The software permits to choose the 3D Printer that it is necessary to print, and in this case, it is used Ultimaker S5. For printing, it must to use a cable or a card memory or via wireless to connect the 3D printer to laptop to put in function the 3D Printer.[1-88]

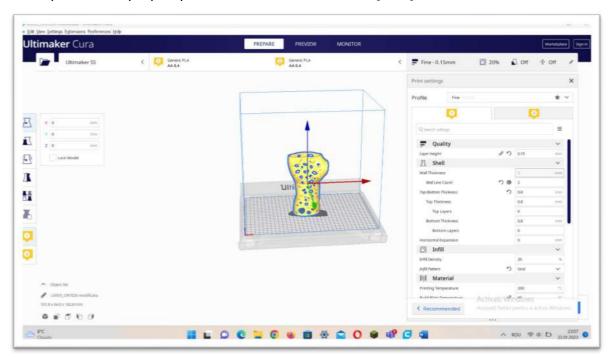


Fig.5. Open Ultimaker Cura software and introduce the STL. file of part

The software permit the move of the part on the work platform after the X,Y,Z axis, the change of the part scale after X,Y,Z axis, such as Figure 6. The rotation of the part after the X, Y, Z axis, the multiplication of the parts on the work platform and the mirror parts printing, it is permitted by the software.

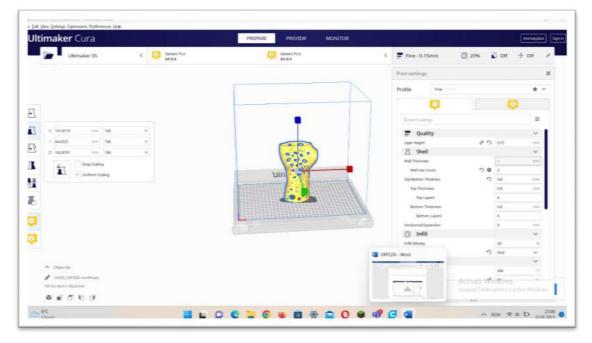


Fig.6. Change the part scale, after X, Y, Z axis

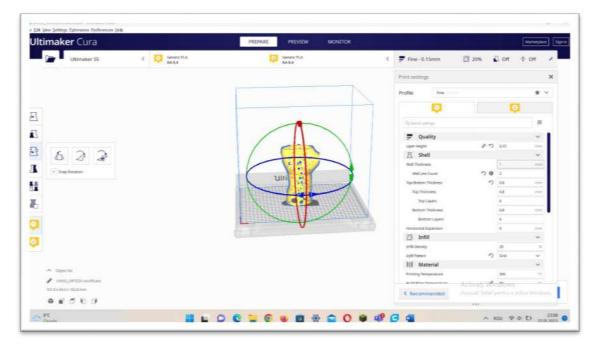


Fig.7. Rotation of the part after X, Y, Z axis

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

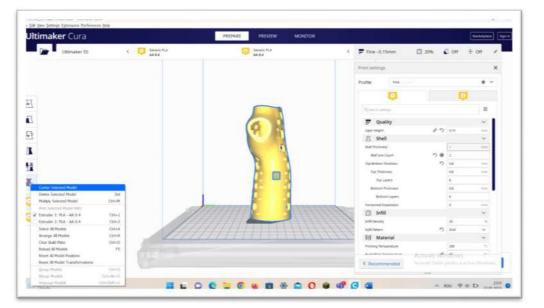
The software permit to choose for printing different materials, as PLA, ABS, PET, etc. For the personalised orthosis, it was choosing ABS materials with the mechanical properties given in the Table 1.[1-88]

ABS and PLA are the most common FDM (Fused Deposition Modeling) printed materials and are typically similar in cost. ABS has superior mechanical properties but is harder to print compared to PLA. Material properties can be chosen using the free site https://www.totalmateria.com/page.aspx?ID=Home&LN=RO

Page | 77

Properties	Values	Units
Density	1.0-1.4	g/cm3
Poisson's Ratio	0.35	-
Shear Modulus G	1,03-1,07	GPa
Melting Temperature	200	°C
Glass transition temperature	105	°C
Thermal Conductivity	0,25	W/m-K
Extruded Temperature	200-230	°C
Heat Deflection Temperature, 1,81 MPa	81	°C
Young's modulus	1,79-3,2	GPa
Tensile Strength	29,8-43	MPa
Compressive Strength	76-78	MPa
Elongation at Break	10-50	%
Flexural modulus	2,1-7,6	GPa
Hardness Shore D	100	
Izod Impact Strength	58	kJ/m2
Yield Strength	28-120	MPa
Standard Tolerance	+/-0.05	mm
Biodegradable	-	-
Melt flow	12-23	g/10min
Rockwell Hardness	R102-R104	

Due to its lower printing temperature is easier to print with and therefore better suited for parts with fine details. ABS is best suited for applications where strength, ductility, machinability and thermal stability are required. ABS is more prone to warping. The mechanical properties of ABS are presented in Table 1.



Iceland Liechtenstein Norway grants

Working together for a green, competitive and inclusive Europe

For 3D Printing process was used only an extruder, the extruder 1 (Fig.8), but in generally we can work with 2 extruders, one for supports and other for part manufacture, as in the Fig. 9. The software permit to custom the 3D Printing process of parts, as in Figure 10 (a and b) or to use the recommended parameters for part manufacturing as in Figure 11.[1-88]

Fig 8. 3D Printing Extruder chosen

maker Cura					PREPARE	PREVIEW	MONITOR						Makeytare
Uttimaker SS	4	ø	Garantic ARE AA.E.A		8	Genera PLA AA 5.4			F Fine-0	15mm	1 20% I	C or	+ or
					Custom				Print setting	n.:			3
				G	mont in King changes			×					
					where catoriand same pro	a contract i			Profile	Per .			* ~
				19	ould you like to Korp these di entatively, you can decard th	arged settings	ater soluting publics? at the defaults from Tine'.			D		×	
					sile settings	For	Convert changes		Question	ange .			=
					ald Plate Adhesion Buld Plate Adhesion Type	bres	none						
					cality Layer Height	0.1	0.15			ality	10	-	*
					dill 1n# Pattern (Extrudier 1)	trangles	grid .		R Sh			9.19	
					well Wellow-Court (Extrader 1)		2		mail These				
				5	Top/Button Thideess (Extr. ared	1.2	0.8		Hallow				
					Part Speed (Extrudie: 1)	55	80		Tar Ballion	(hubsets)	5	5.8	110
									Top Top	formation .		2.8	246
									14	CALCULATION OF A			
								8	homes	Thickness.		6.8	
					ionys ask me this				24	ort Lagent			
				1.1			King durings Decard during	2 4	To go di			8	***
				12			ALL STREET, ST		El Inf				~
				177	111111	7.1.1.1	1111111	19	3-56 Deniz			20	
			AB						DI Ma		2	64	č
A Digethe		- 25	2.2	derek de		_			Friend Te			245	
/ units.comtik-militara		- 68									Activiti W		
CO. An exchanged a reaction of									C Raccon				
		100								incomers.			

laterials compatible rinter: I timaker 55	with active	ABS		
Favorites	<	Information	P	rint settings
Generic Generic AB	s v	Default Printing Temperature	230	°C
Generic Bre	ak	Default Build Plate Temperature	85	°C.
Generic CFI	F C	Standby Temperature	85	°C
Generic CFI	F PA			
Generic CPI	E	Retraction Distance	6.5	mm
Generic CPI	E+	Retraction Speed	45	mm/s
Generic GFI	F.C.	Fan Speed	2	5
Generic GFI	F PA	10120 M040401		
Generic Nyl	lon			
😑 Generic PC	5			
Generic PET	TG			
eneric PLA	8			
Generic PP				

Fig.9. Choosing the ABS filament for 3D Printing

Fig.10a. Printing setting for ABS material

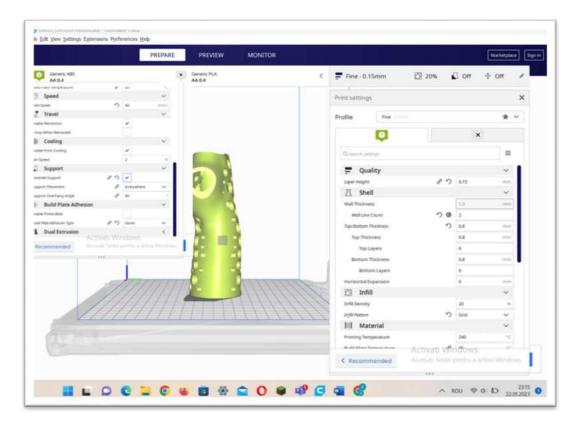


Fig.10b. Manufacturing parameters for custom 3D Printing without supports

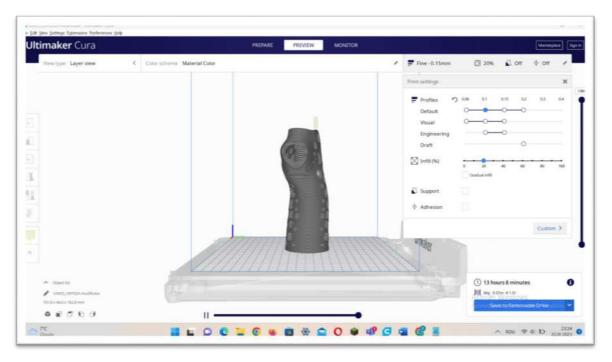


Fig.11. Recommended manufacturing parameters for the part by the software

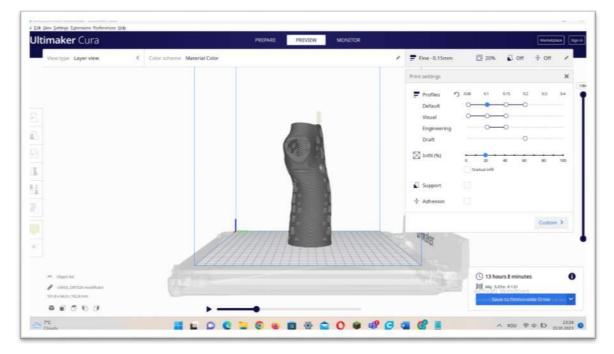


Fig.12. Preview the manufacturing 3D Printing process

It must click the blue button slice to slicing the parts. The software gives information's concerning the time necessary for manufacturing (13 hours and 8 minutes), the cost of the part (1.51 euros if 1kg ABS filament cost of 25 euros) and the material consumption (66 g, filament length used 9.37 m). The software permit to used supports if it necessary to obtain parts with great accuracy or without supports if it must obtain part in a shorter time. The software permit to preview by a small video, the simulation concerning the 3D Printing process, as in the Figure 12.[1-88]

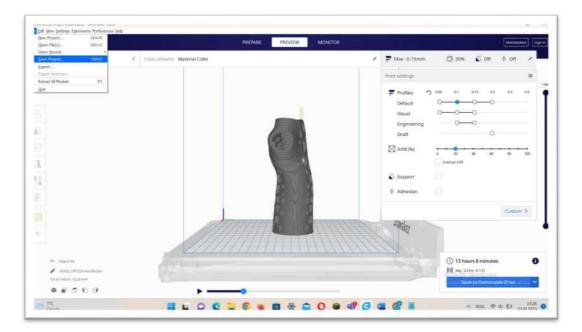
For saving the part file, the software Ultimaker Cura it necessary to click on Save Project, as in Figure 13, then it will obtain the Summary- Cura Project, as in the Figure 14, and it will save as

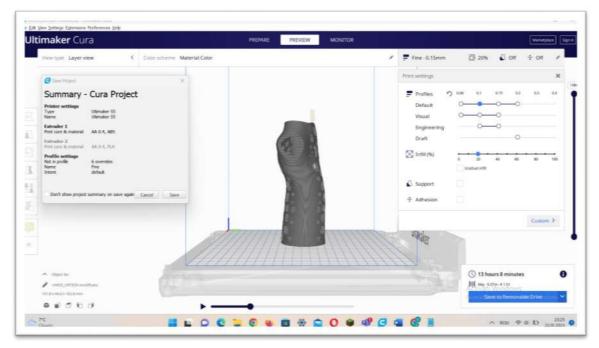
3mf. file orthosis, as in the Figure 15.

The software permit export file (Figure 16) with different extensions, and it was choose the

extension file - g-code orthosis necessary to 3D Printing, as in Figure 17. In figure 18, it is presented how look the g-code for orthosis part. For time of printing is 13 hours and 8 minutes and the filament consumable is 66 g, length 9.37m, and the cost of part is 1.51 euro, if considered that the filament cost is 25 euro/kg.

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.





Page | 83

Fig.13. Save Project

Fig.14. Summary- Cura Project

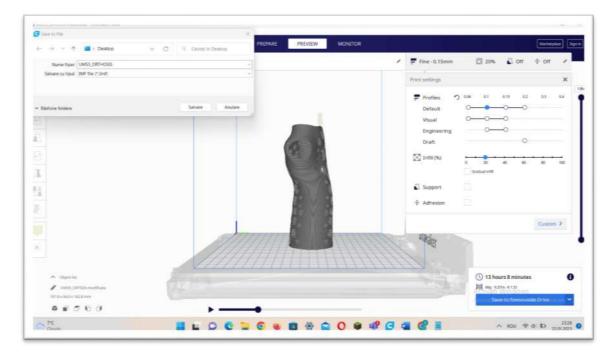


Fig.15. Save project as 3mf. file

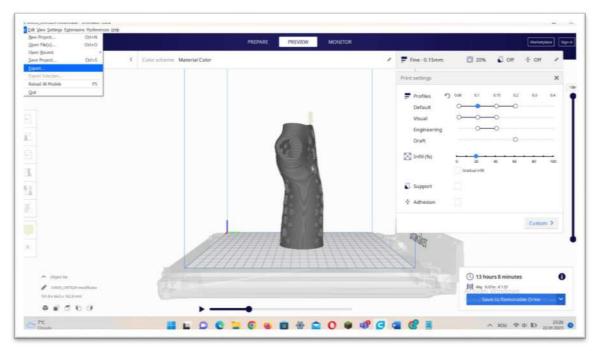


Fig.16. Export file

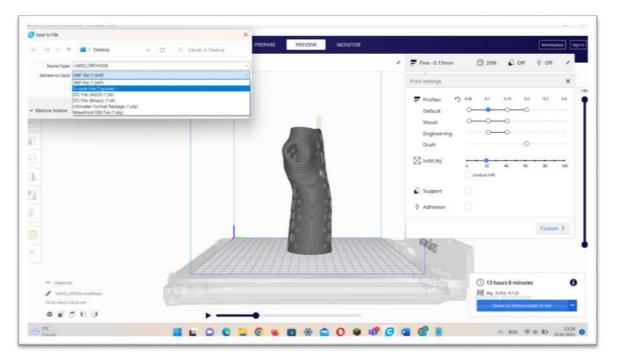


Fig.17. Different extension for file export

- Antonio anto antonio	
er feltere Vizulizare	
TANT OF HEADER	
ADER_VERSION:B.1 AVOR:Scriftin	
Weinder Frite Mehallik same roure steamengine	
REAATOR, VEYSION, A. R. O	
THEFATUR. HUILD DATE 2008-11-10	
about section many ultimator ss	
RTRUEER TAKIN.0.INITIAL TIPPERATURE:240	
RTRIDER_TRAIN.0.MATERINI.VOLUME_UMED:19794	
RTNIDER TRAIN.D PRICETAL UNID DOBINGA 1187 4267 8231 Fe770354000	
RTINDER_TRADE.B. NOTFLE. DEAMETER: 0. 4	
RTRIDER TRAIN. 0. MUTZLE. MARE: AA 0.4	
utup platti tymt glass	
VILO PLATS, INCTIAL TOPPERATURE: 85 VILO VOLUNE, TENPERATURE: 36	
MILLE VIOLATE -> ETATEMPENTENE > 20	
KART GROUPS 1	
WINT, 5122 - MIN, N. 1144, 271	
R187,5122,418,7-88,155	
6167.5178.MIN.7.0.27	
61NT-5228-MAX.31215.73	
RINT_SLITE_BAR_V=151_BAL	
R1N1 - 5125 - MGR - 21362 - 72	
ND_OF_HEADER	
enerated with Cura_SteamEngine 4.0.0	
z Labiolate extrusion mode	
A Personale exclusion woon	
2.10	
H 1248	
88 51	
220-001	
F1300 C-5	
AVGA_COLMET_LIGHA_	
Arta e	
er de 1425	
5-16-16	
ESPECIFICAL woll+liata.srt	
23186 VIII 100 VIII 188 10 11	
n pill	30% Writes (327 - 377.8

Fig.18. G-code file for personalized orthosis part

Fig.19. Personalized Orthosis printed by FDM technology

Product 2: Robotic Arm – ASM, SLDASM. file Poznan University of Technology Partner

2.1. CAD Modeling

Many CAD files (13 elements) must be made, designed and saved as SLDPRT files and then will

be assembled using to obtain the robotic arm, save as ASM, SLDASM file, as in the Fig.20. is ready for production.[1-88]

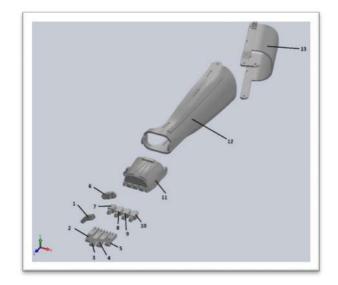


Fig.20. Exploded View – Robotic Arm

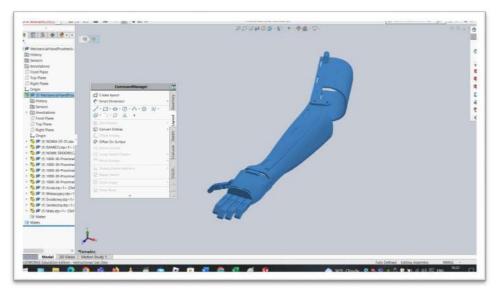


Fig.21. Robotic arm assembly – ASM, SLDASM. File

In the figure 21 is presented robotic arm assembly (all 13 elements), saved as ASM, SLDASM file. file to establish if the parts were well designed. In figure 22, it was used SolidWorks Visualize 2019, that permit to choose different texture mapping (in function of the material used, plastic, metallic, glass, etc.) for the robotic arm.[1-88]

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

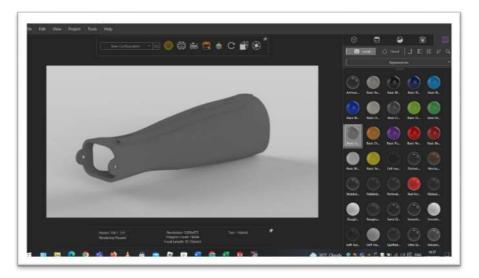


Fig.22. SolidWorks Visualize 2019 – robotic arm with different texture mapping

2.2. STL file

For manufacture using 3D Printing technology, the solid part is converted in STL file, and it will be saved such as .STL file and must choose from properties menu the resolution (coarse, fine or custom) and it was choose fine quality for meshing the product, such in Figure 23. Total triangles are 109616 used for meshing.[1-88]

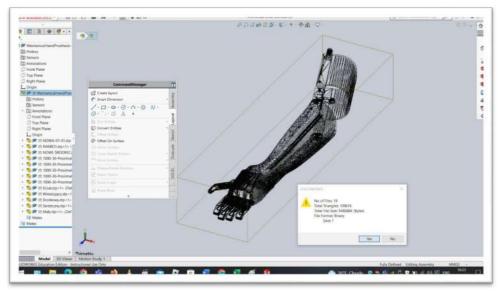


Fig.23.Robotic Arm – STL. file

2.3. 3D Printing software's

The material chosen to be used for this product is PLA filament, having the mechanical properties presented in table 2. PLA is ideal for 3D prints where aesthetics is important.

Table 2. The mechanical properties of PLA (Polylactic Acid)

Properties	Values	Units
Density	1.25	g/cm3
Poisson's Ratio	0.36	-
Shear Modulus G	2.4	GPa
Melting Temperature	173	°C
Glass transition temperature	60	°C
Thermal Conductivity	0.13	W/m-K
Extruded Temperature	160-220	°C
Heat Resistance	110	°C
Young's modulus	3.5	GPa
Tensile Strength	61.5	MPa
Compressive Strength	93.8	MPa
Elongation at Break	6	%
Flexural strength	88.8	MPa
Hardness Shore D	85	А
Impact Strength	30.8	kJ/m2
Yield Strength	60	MPa
Standard Tolerance	+/-0.05	mm
Biodegradable	yes	-

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

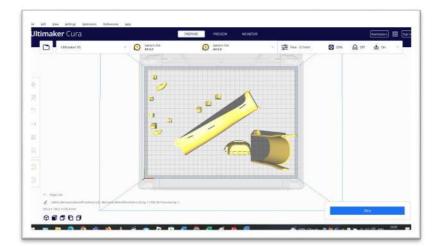


Fig.24. Drag the STL. files on the worktable of the 3D Printer using Ultimaker Cura

In the Figure 25 is shown the PLA filament choosing for 3D Printing and in the figure 26 are presented the printing setting for PLA filament used for FDM process.[1-88]

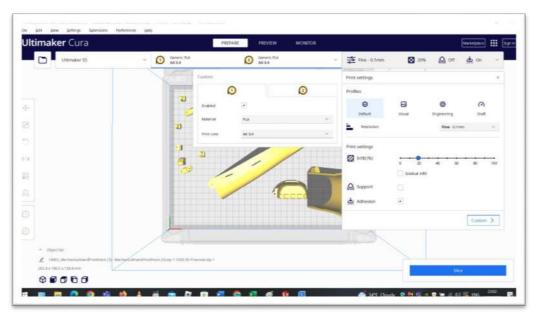


Fig.25. PLA filament choosing for 3D Printing

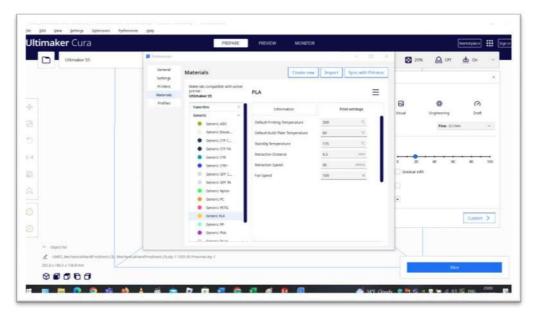


Fig.26. Printing setting for PLA material

In figure 24, all components of robotic arm saved as STL. files are drag on the worktable of the software, because are great dimensions and the Ultimaker S5 table does not permit, we can print simultaneous files at the scale 60%, as in the Figure 27 or we can print in multiples stages at the scale 100%. For 3D Printing, were used two extruders and was used the recommended manufacturing parameters given by software and were selected the supports. It must click the blue button slice to slicing the parts.[1-88]

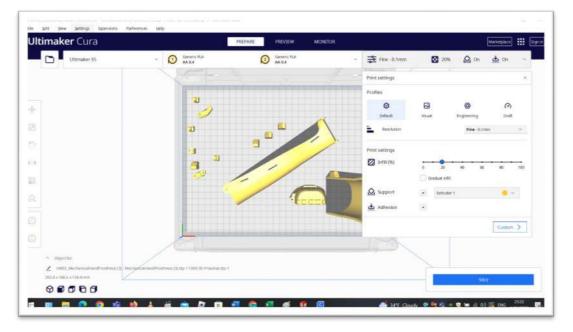


Fig.27. Prepare 3D Printing using two extruders and click slice

For the manufacturing of part exist two modes: recommended by software or custom, where it can personalise the 3D Printing process in function of the materials, the supports necessary, the speed, the temperature, the infill density of the support material. In figure 28, it is presented the recommended manufacturing parameters for robotic arm given by Cura software. In figure 29 is presented the preview of the manufacturing process, it is a small simulation.

The part can be saved as project 3mf. file **COBOTIC** as in Fig.30 and the summary report is shown in Fig.31. The file can be exported using different extensions: stl (ASCII and BINARY), g-code, obj, 3mf and ufp, such in figure 32. In figure 33 is presented the g-code file for Robotic Arm

and in figure 34 is the printed robotic arm at scale 1:1. After the printing of the part, the supports are eliminated, and the surfaces are cleaned. The surfaces can be manufactured by different classical mechanical processes, such as drilling, milling, etc. The time for the printing process is 1 day 18 hours 39 minutes, the filament consumable is 157 g, filament length used is 19.82 m, the filament cost is 3.14 euros, if considered the PLA filament cost 25 euro/kg.

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

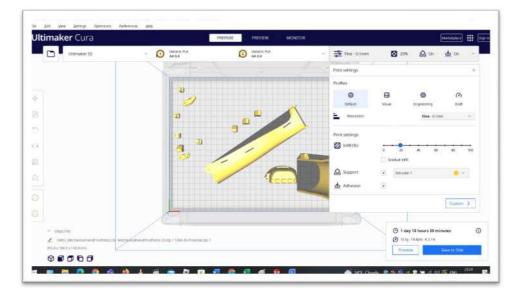


Fig.28. Recommended manufacturing parameters for the part by the software

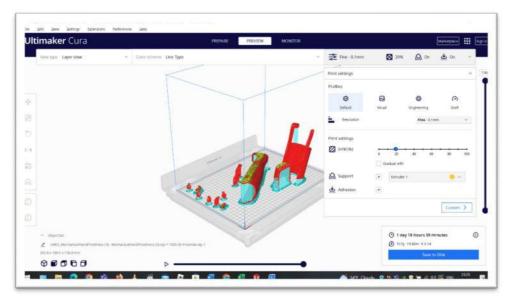


Fig.29. Preview the manufacturing 3D Printing process

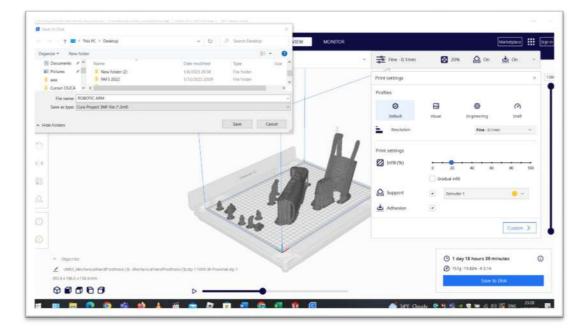


Fig.30. Save project as *3mf. file

timaker Cura	PREPARE PREVIEW MON			Mariasplace 🗰
Vew type Layer view 🗠 Co	urscheme Like Type	- Fine - 0.1mm	🖸 20% 🙆 On	📥 01 🗸
	Sar Rejet	× settings		9
	Summary - Cura Project	ans .		
	Printer settings Type Ultimaker 55 Name Ultimaker 55	O	G Ø	(P) Draft
	Extruder 1 Print care & material AA G.K.P.LA	Resplature	Fine -5	tren v
	Extrader 2 Perc core 5 material AA. BL, PLA Profile actings Not a portie Townshit Not a portie Townshit Inter default	settings Infik (%) Support Adhesion	20 40 1 Cradual rMI Catuder 1 C	80 80 108 •
	Don't show project summary on save again	Cancel Save		Custore >
 Objective OVEL_Westware/Producess() - Meta-cumulative SELEX VBLX (18.5 x 19.6 mm) 	1. qt. 10000 0 Frainer 4 (1,0000 0 Frainer 4		() 1 day 18 hours 39 () 157g-19880-63.54 ()	

Fig.31. Summary- Cura Project

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

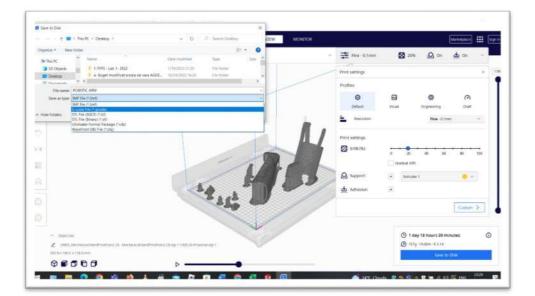


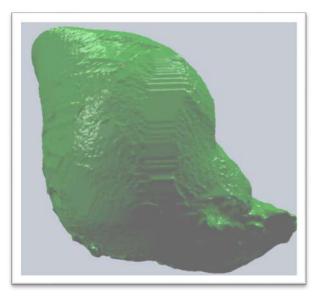
Fig.32. Different extensions for file export

for from the later	
NT OF HEADER	
See (See 100 pt a)	
ND Scriffin	
DANDA, BARK-Cura Atsumingtow	
charles.vcRsIon:mgie	
CNA708.B/JLD_DA72.2022.00-12	
OET_MACHINE.INAME/NGTIWARAF 55:	
NUXX_TRAIN/P.INCTIAL_TEPPENATURE/200	
M.DEF_TMADK.IR.MAYERTAL.VILLIME_USED:12/6418	
RUDER TRADE & MATERIAL, MUDISBACOTHI estas 4044 0242 DIGIAZINIANO	
0.004 TRADE.0.002211.hm90:AA.de.a 10.0047.T990:rd.ass	
D PLATE INTELED TENPERATURE 160	
IN WILLING THE THE CONTRACTOR OF	
TL THE TRANSF	
HT_GROUPS-1	
NT. 5227. HTN. 8-6.648	
NT.522.HTN.9120.BBB	
NY, 5027, HDN, 21(0, 2	
NT. 5229 (MAR. 81907, 567)	
HT-9229-MAK.9(224-522	
NT-5221.196K.213.00.0	
07_064000	
erated with Cura_Steamingine main	
jabalite extructon mode	
64	
5306	
51	
20.003	
270k 6-6-3	
EI_COMMT153489	
19.7 P	
1100	
X20 Y20	
400 T2.2	
100 12.3 1255.7 X227.193 142.06 72.2	
223-220 Yes-152 TE-ND 24-8	
Additional Personal	
	(ALCAL) MIN Wester (DD) UTFA

Fig.33. G-code file for Robotic Arm

Fig.34. Robotic Arm printed by FDM technology and assembled

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.



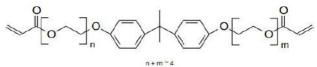
Product 3: 3D Fresh Printing of organ phantom for surgical applications – site <u>https://www.embodi3d.com/</u>

Physical organ models are the objects that replicate the patient-specific anatomy and have played important roles in modern medical diagnosis and disease treatment. 3D printing, as a powerful multi-function manufacturing technology, breaks the limitations of traditional methods and provides a great potential for manufacturing organ models.

Fresh 3D Printing (Freeform Reversible Embedding of Suspended Hydrogels) is an additive manufacturing technique for manufacturing different organ phantoms which can mimic the corresponding soft living tissue. [1-88]

The technology 3D Fresh Printing is similarly with the technologies SLA and DLP, only that used silicones or hydrogels, that permit to print different human organ models with the real consistency of the respective organs, that permit to help the students to University of Medicine to study their properties and to prepare the surgical operation stages planning, implantable epidermal devices, patient-specific pulse oximeters and in the tissue engineering applications. The printer must be modified, such as Tobeca 333, (Tobeca, France), that used the software Simplify 3D and as material a mono-component silicone by Elkem Silicones, France (AMSil 20101).

Fig.35. Liver model for printing


Iceland Liechtenstein Norway grants

Working together for a green, competitive and inclusive Europe

The nature of FRESH printing offers the capability to 3D print object using layer-bylayer, nonplanar or freeform approaches. The latter one produces geometries that are not possible to achieve in traditional 3D printing. Additionally, it solves one of the most tedious processes of 3D printing, which is to guarantee that the platform is completely flat, since the object can be manufactured in any location of the support bath. In general, the materials used is the thermoreversible Pluronic F-127 based support bath supplied by Sigma Aldrich, USA. Fresh 3D printing is a particular type of DIW embedded 3D printing EMB3D technique. [1-88]

For the surgical operation stages planning, we can use the technology SLA and DLP, that are most simple to used and can permit the 3D Printing with a great accuracy the complex parts. In the SLA (Stereolithography) and DLP (Digital Light Processing) technologies are used photocurable vinyl- or epoxy- functional oligomers for photopolymerization. In table 3 are presented the mechanical properties of Bisphenol A Ethoxylate Diacrylate resin. Other resins used in SLA manufacturing are the polyurethane resins.

Table 3. The mechanical properties of Bisphenol A Ethoxylate Diacrylate Bisphenol A Ethoxylate Diacrylate

n + m

INTRODUCTION

EBECRYL 150 is an ethoxylated bisphenol A diacrylate commonly used as reactive diluent in UV/EB cure applications. EBECRYL 150 can improve the cure response, hardness, and chemical resistance of UV/EB curable coatings and inks while maintaining good adhesion, and without imparting brittleness.

PERFORMANCE HIGHLIGHTS

- EBECRYL 150 is characterized by:
 High reactivity
- Moderate viscosity
- High refractive index

UV/EB curable formulated products containing EBECRYL 150 are characterized by:

- Hardness
- Chemical resistance
- Good adhesion
 Improved wetting
- Improved wetting

The actual properties of UV/EB cured products also depend on the selection of other formulation components such as oligomers, additives and photoinitiators.

SPECIFICATIONS	VALUE
Acid value, mg KOH/g, max.	5
Appearance	Clear liquid
Color, Gardner scale, max.	2
Viscosity, 25°C, cP/mPa-s	1150-1650
TYPICAL PHYSICAL PROPERTIES	
Density, g/ml at 25°C	1.14
Flash point, Setaflash, °C	>100
Functionality, theoretical	2
Refractive index (np at 20°C)	1.5294
Vapor pressure, mm Hg at 20°C	<0.01
TYPICAL CURED PROPERTIES	
Tensile strength, psi (MPa)	6300 (43)
Elongation at break, %	9
Young's modulus, psi (MPa)	180000 (1241)
Glass transition temperature, 'C ⁽³⁾	41

3.1. CAD Modeling

For 3D Printing of physical organ models, the medical images are first acquired through computer tomograph CT, magnetic resonance imaging MRI. Through the above procedures, the original image data, usually in DICOM (Digital Imaging and Communications in Medicine) format, will be obtained and then can be processed.

Image processing is a process of transforming DICOM images into 3D digital models. It is also a broad concept, including image segmentation, computer aided design (CAD) and format conversion.

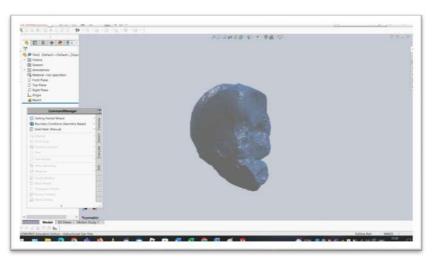


Fig.36. STL. file – liver phantom

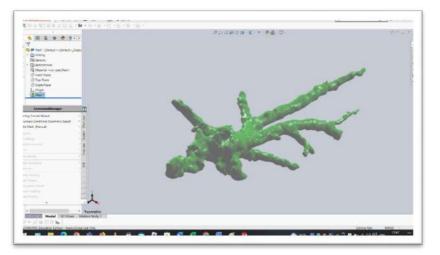
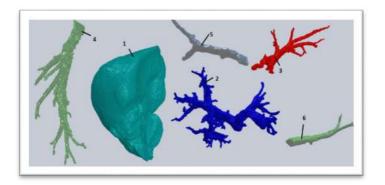
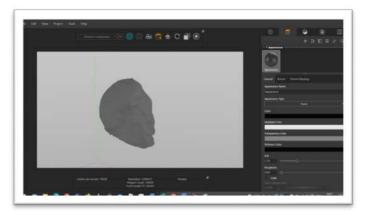


Fig.37. STL. file – blood vessel

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.



3.2. STL file


The file formats that 3D printers can accept are limited to several special 3D dataset files, mainly the Standard Tessellation Language (STL) format and some newer formats called Additive Manufacturing File Format (AMF) or 3D Manufacturing Format (3MF). The model data must be converted into files in these formats before it can be 3D printed.

There are several software can meet the demands of image processing, ranging from interactive medical image processing software like Mimics (Materialise), D2P (3D Systems), and CAD model processing software like Magics (Materialise), Geomagic Studio (3D Systems) and SolidWorks (Dassault Systems). In many cases, using multiple software together can integrate different functions.

For 3D Printing of the liver are 6 components, they are 6 different STL. Files (liver and blood vessels), that must be assembled and saved as ASM, SLDASM. file and printed 3D. We obtain the STL. files, such in the figures 36 and 37.

Fig.38. Exploded View – Liver phantom

Fig.39. SolidWorks Visualize 2019 – Liver phantom with different texture mapping

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

In Figure 38, it is presented the explode view of the components of liver phantom. In the Figure 39, it presented different texture mapping chosen, using SolidWorks Visualize 2019.

3.3. 3D Printing software's

For printing it used a SLA printer, FormLabs Form 2 and the free software PreForm and the resin chosen was Flexible and the layer thickness was 0.05 mm, such in Fig. 40.

21 C			Model List	
.7	Print Setup	×		
4	Printer		1	
然 \$2	Form 2 VIRTUAL PRINTER			
2	Material Version			
	Flexible • V2 (FLF	LGR02) •		
	Layer Thickness Fealest Prot	(mm) Highest Resolution		
	01	0.05		
	More Information About Using Plexible Resin	0		
	Cancel	Apply	+	
0	ttings 💈 Form 2 🌢 Castable V2 🕏 0.05 mm Volume 0	Mark Anna A. Brits Terr	O Printabili	

Fig. 40. Software PreForm, 3D printer, photopolymerisable resin and layer thickness chosen

In figure 41, it can click orientation to move the part on the worktable, in figure 42, it can chosen the supports necessary to sustain the part during the 3D Printing process. The layout chosen is presented in figure 43 and to print 3D it must to click on the orange button – Start a print, as in figure 44.

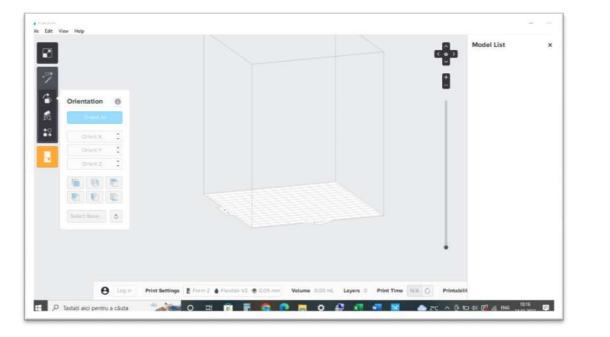


Fig.41. Orientation X,Y,Z on the worktable of the part

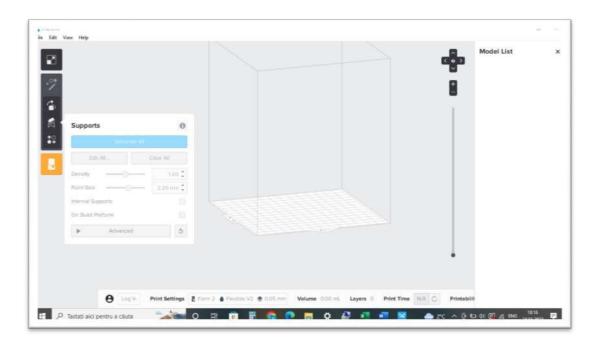


Fig.42. Supports chosen to sustain the part during the 3D Printing process

Iceland Liechtenstein Norway grants

Working together for a green, competitive and inclusive Europe

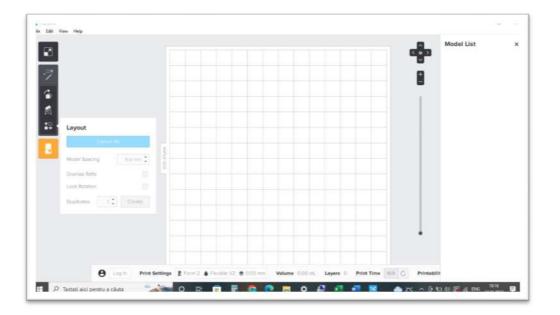


Fig.43. The layout chosen

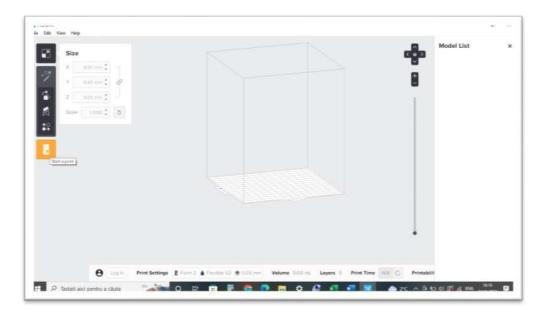
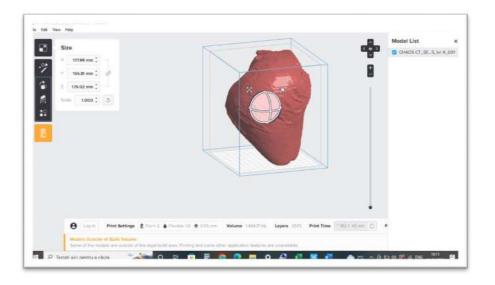


Fig.44. The orange button – Start a print



In figure 45, it was dragging the liver phantom STL. file into the worktable of the 3D Printer, but the part has very great dimensions in comparison with the worktable space, it becomes red coloured.

Page | 103

Fig.45. Drag the liver phantom STL. file on the worktable

In this case, it was changed the scale at 1:2 and was calculating orientation and generating the supports as in figure 46. [1-88]

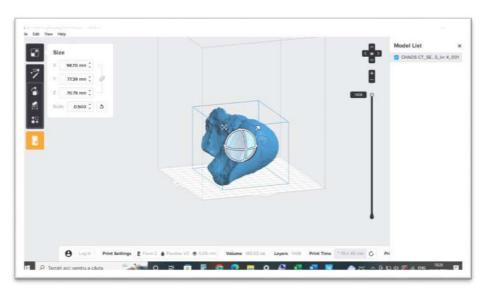
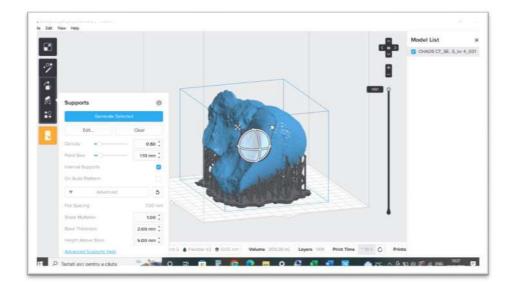


Fig.46. Change the scale at 1:2 and was calculating orientation and generating the supports



Page | 104

Fig.47. Calculating orientation and generating supports

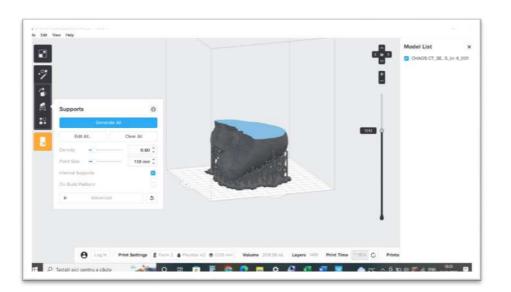


Fig.48. Surface printed at the layer 1042

For Orientation and Supports, it must click on the respective buttons and the program realized them automatically or we can realize them manually, such in figure 47. The program permit to see the slicing of the part, each layer, specify the number of the layer and the surface

coloured with blue, that is printed at the layer 1042, such in figure 48. The program shows the resin volume used 209.28 mL, nb of layers 1491 and print time approximative 19 hours.

S.

In figure 49, the printing setting of the part liver are saved such as LIVER.FORM using the software PreForm. For 3D printing of the part, it must click on the orange button to print, such in figure 50, after connecting the printer on-line, or with a cable to the laptop.

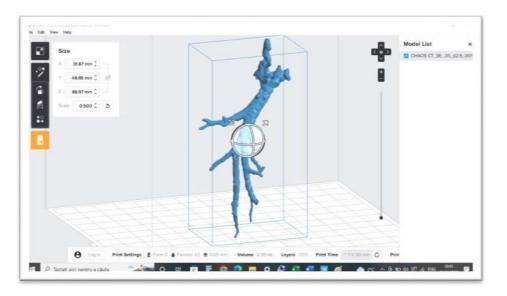
					Model List
E localeb			×		CON CHAOS CT. SE. S. M
6 Acest A	PC > Desktop	0 P Gute In Des	TOP .		
NumeRijer, 12VIR					N
Salvare co tipul. PreForm I	ulte ("Aormi				-
					a (
✓ Råsfolve foldere		Selvere	Anders		
Denty -0	- 1411		1000		
Parentica	- 1 till me 2				
Internal Supports				6	
On Rula Pattern		P			
• Abrent	5				
For Sealing	700 mm				
Stope Multiplier	100				
Rept. Thickness	2.00 (66.2				
resignt Alarse Base	3-00-000				
			and the second second	self Print Time Table	O Printe

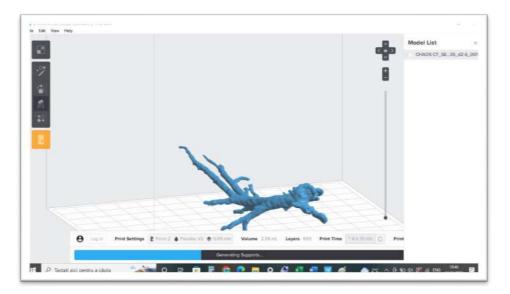
Fig.49. Save the file as Liver with the extension .FORM

22		- de	Model List III
7		8	
6	Print	× -	
	Printer		
42	Peaks select a press.		
2	Job Name OHAOS CT., SET, JS, M. 001		
	Account Or Log In		
	Models Drevetly on Bullet Partners Models may not pres properly when plated directly on the built plater, Using supports the event them in recommended.	D.	
	Bask		
O Logie Pdat	Settings E from 2 & Floots V2 & 0.05 mm Volume 74565 m. Layers 2007 Print Time	- 10 × 10 min C	Pri

Fig.50. Click on the orange button to print

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.





In figure 51, it was dragging the blood vessel STL. file into the worktable of the 3D Printer and it was changed the scale at 1:2 and was calculating orientation and generating the supports as in figure 52.

Page | 106

Fig.51. Drag the blood vessel STL. file on the worktable platform

Fig.52. Calculating orientation and generating supports

First, are realized the supports, such in Figure 53 and then the part such in Figure 54.

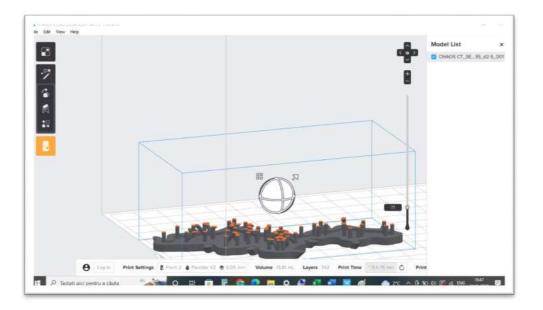


Fig.53. Supports generating

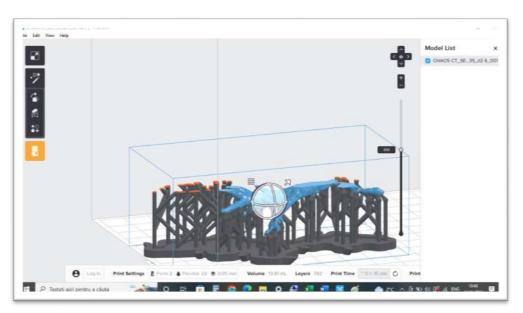


Fig.54. Part generating

In figure 55 was saved the file as Blood Vessel .FORM file and in figure 56 was click on the Print command of the part and the 3D Printer will manufacture the part. Specifically of the SLA technology is that the parts are manufactured upside down.

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

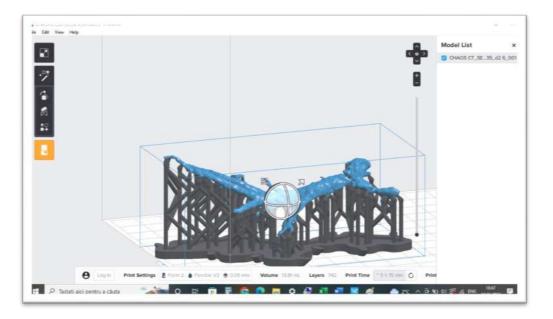


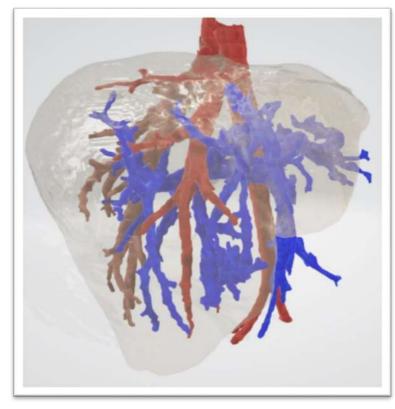
Fig.55. Save the file as Blood Vessel .FORM file

	ą.	Model List OHAOS CT_SE_35_62 6,00
.7	8	
4	Print X	
1	Printer	
#7	Pose select spreter.	
- L.	Job Name CHAOS CT_SET_35_42 6_001	
	Account Or Log In	
	Small Support Centact Points	
	Sonie modelik have supports with small contact points. Models may not print correctly using NextNe review with small support contact paints.	
1903	Back	
AN A		
	Form 2 & Feedbin V2 & 0.05 mm Volume 13.81 mL Layers 742 Print Time 15.8 15 mm C	Print

Fig.56. Print command of the part to 3D Printer

In the figure 57 is presented the liver phantom printed 3D using the SLA technology. After printing the parts, are eliminated the supports and the parts are cleaned in isopropyl alcohol

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.



and then are introduced in UV furnace to grow the mechanical properties during 30 minutes at the temperature of 210°C.

Page | 109

Fig.57. Liver phantom with blood vessels

4. Conclusions

In the future, further research on both multi-material and multi-colour prototypes could be performed, focusing on additive manufacturing technologies based on different silicones and plastic materials with different colours, necessary for different medical prothesis and devices. The use of different silicones would be interesting in order to manufacture more complex phantoms, in which not only the desired organ is 3D printed, but also the surrounding anatomical structures. For example, the tumour or blood vessels by changing the component ratios. [1-88]

The implications of the present research would be interesting for the manufacture of phantoms to be used in research and industry: medical imaging, preoperative surgical planning in hospitals, etc.

Iceland Liechtenstein

Working together for a green, competitive and inclusive Europe

Page

| 110

5. References

- 1. Ratner Buddy D., Hoffman Allan S., Schoen Frederick J., Lemons Jack E.- Biomaterials Science, An introduction to materials in medicine –Academic Press, 2013;
- 2. https://en.wikipedia.org/wiki/3D_printing
- https://3dscentral.3dsystems.com/?option=com_content&view=category&id=312& itemid=734
- Butscher A., Bohner M., Roth C., Ernstberger A., Heuberger R., Doebelin N., Von Rohr P.R., Muller R., Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds, Acta Biomaterialia, Vol.8, Iss.1, 2012, pp.373-385
- 5. http://www.bibus.hu/fileadmin/editors/countries/bihun/product_data/zcorp/documents/ zcorp_series_zprinter_310_plus_manual_en.pdf
- 6. http://sldtech.com/wp-content/uploads/2008/10/consumables_catalog_.pdf
- 7. https://en.wikipedia.org/wiki/3D_bioprinting
- 8. Murphy S.V., Atala A., 3D bioprinting of tissues and organs, Nature Biotechnology, 32, 2014, pp.773-785
- 9. http://www.star-prototype.com/blog/top-7-methods-for-making-3d-rapid-prototypes/
- 10. https://en.wikipedia.org/wiki/Fused_deposition_modeling
- 11. http://www.erpro.fr/ABS-deposition?lang=fr
- 12. https://en.wikipedia.org/wiki/Stereolithography
- 13. http://intech-ind.com/sla-machines-in-rapid-prototyping/
- MacDonald D. Applying Stereolithography to produce usable prototypes and tooling, Proceedings of the 2nd European Conference on Rapid Prototyping and Manufacturing, Nottingham (UK), 1993, pp113- 118, ISBN 0951975919;
- 15. Earle J. Graphics for engineers, 5th edition, Pretince-Hall, 1999, ISBN 0130160075;
- Hague R., Dickens P.M. Finite element analysis calculated stresses in investment casting shells using stereolithography models as patterns, Proceedings of 5th European Conference on Rapid Prototyping and Manufacturing, Helsinki (Finland) 14th – 16th june 1996, pp31-46, ISBN 0951975951;
- 17. http://envisiontec.com/3d-printers/ultra-3sp-family/
- 18. https://en.wikipedia.org/wiki/Digital_Light_Processing
- 19. The Best Industrial Metal and Plastic 3D Printers I 3D Systems
- 20. Berce P. & others Tehnologii de fabricație prin adăugare de material și aplicațiile lor Romanian Academy Edition, Bucharest 2014;
- 21. <u>Electron-beam additive manufacturing Wikipedia</u>

Working together for a green, competitive and inclusive Europe

- 22. https://www.eos.info/precious-m-080
- 23. http://gpiprototype.com/files/dmlm/EOSINT%20M%20270%20Brochure.pdf
- 24. https://books.google.ro/books?id=QW8KBwAAQBAJ&pg=PA107&lpg=PA107&dq=EOSINT
- 25. https://www.3dsystems.com/3d-printers/prox-dmp-320
- 26. https://www.3dsystems.com/3d-printers/prox-dmp-300
- 27. https://www.3dsystems.com/3d-printers/prox-dmp-200
- 28. https://www.3dsystems.com/3d-printers/prox-dmp-100
- 29. https://www.concept-laser.de/en/products/machines.html
- 30. https://www.concept-laser.de/en/products/machines/m-line-factory.html
- 31. https://www.conceptlaser.de/fileadmin/Blaue_Broschueren/1708_X_LINE_2000R_EN_updat e
- 32. http://brochure.copiercatalog.com/3d-systems/brochure_phenix_systems_gb_2012.pdf
- 33. https://slm-solutions.com/products/machines/selective-laser-melting-machine-slm-500
- 34. https://slm-solutions.com/products/machines/selective-laser-melting-machine-slm-280-20
- 35. https://slm-solutions.com/products/machines/selective-laser-melting-machine-slm-125
- 36. http://www.arcam.com/wp-content/uploads/arcamebm-corp.pdf
- 37. https://www.autodesk.com/redshift/electron-beam-melting/
- 38. https://additiveindustries.com/uploads/media/588b3d45c16db/brochure-metalfab1.pdf
- 39. https://www.optomec.com/wp-content/uploads/2014/04/LENS_450_Datasheet-WEB.pdf
- 40. https://www.optomec.com/wp-content/uploads/2014/04/LENS_MR-7_WEB.pdf
- 41. https://www.optomec.com/wp-content/uploads/2014/04/LENS_850-R_Web_0716.pdf
- 42. http://iopscience.iop.org/article/10.1088/0022-3727/48/3/035303
- 43. http://docplayer.fr/52020123-Etude-du-controle-de-procede-de-projection-laser-pour-lafabrication
- 44. https://www.3ders.org/articles/20151125-toshiba-to-unveil-metal-3d-printer-that-is-10-times
- 45. Ż. A. Mierzejewska, Process Optimization Variables for Direct Metal Laser Sintering, DOI: 10.1515/adms-2015-0021
- 46. http://www.industrial-lasers.com/articles/2016/02/web-exclusive-cladding-and-additivemanufacturing
- $\label{eq:constraint} 47. \ Downloads/attar_e_simulation_of_selective_electron_beam_melting_proces.pdf$
- 48. https://me-mechanicalengineering.com/electron-beam-machining-ebm/
- 49. https://www.rdmo.com/boiler-making-12/laser-13/laser-phenix-systems-pm100-dental-7529

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

- 50. https://www.rtejournal.de/ausgabe2/103
- 51. http://lycees.acrouen.fr/maupassant/Melec/co/Communication/FTTH/web/res/image_14.png
- 52. https://www.laserstoday.com/2016/12/additive-manufacturing-using-laser-hot-wire-powder
- 53. http://www.myshared.ru/slide/1324038/
- 54. http://deuns.chez.com/sciences/cristallo/cristallo44.html
- 55. http://shopmetaltech.com/fabricating-technology/fabricating/nd-yag-or-fiber-laser-formicro
- 56. https://en.wikipedia.org/wiki/Transverse_mode
- 57. https://extrudehone.com/enhanced-finishing-solution-metal-3d-printing
- 58. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000200019 [156] https://www.eos.info/additive_manufacturing/for_technology_interested
- 59. T. Hardenne. Application du laser cladding au rechargement et à la fabrication de pièces. Technical report, Université de Liège, 2011.
- 60. http://www.mdpi.com/2073-4352/3/4/517/htm
- 61. http://www.sciencedirect.com/science/article/pii/S0141635916300721#bib0225
- 62. http://www.mdpi.com/2075-4701/6/11/286/htm
- 63. http://www.nae.fr/wpcontent/uploads/2015/07/FabAdditiveMetallique TechnoOpportunites-NAE.pdf
- 64. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000700024
- 65. http://www.sciencedirect.com/science/article/pii/S0264127516313296
- 66. https://www.youtube.com/watch?v=KbXJb4wcxnw
- 67. http://www.mdpi.com/1996-1944/9/12/975#
- 68. http://www.mdpi.com/1996-1944/10/9/1055
- 69. https://www.intechopen.com/books/superalloys/comparison-of-additive-technologies-forgradient
- 70. http://www.sciencedirect.com/science/article/pii/S0030399214000632
- 71. https://www.slideshare.net/carstenengel/selective-laser-melting-versus-electron-beammelting
- 72. http://www.insidemetaladditivemanufacturing.com/blog/visual-guide-to-the-most-common-defects
- 73. http://slideplayer.com/slide/4731730/
- 74. http://www.sciencedirect.com/science/article/pii/S1359645417308170

- 75. https://www.researchgate.net/publication/277020783_Surface_texture_measurement_for_ additive
- 76. http://www.sciencedirect.com/science/article/pii/S135964541630088X
- 77. https://www.assemblymag.com/articles/93176-additive-manufacturing-takes-off-inaerospace-industry
- 78. http://www.romanoff-west.com/laser-metal-mould-making-machine.html
- 79. https://alopexoninnovation.com/category/systems-engineering/
- 80. http://beta.metal-am.com/introduction_to_metaladditive_manufacturing/Design_advantages
- 81. https://www.researchgate.net/publication/294109314
- 82. https://www.sciencedirect.com/science/article/pii/S0264127519305751#fig0005
- 83. https://www.sciencedirect.com/science/article/pii/S0264127518300303?casa_token=NqqBR t_j0u4AAAAA:ypnAxH32t1hY5JaawJelewifiQYZUg0PskVYkAnWymwxaWc2RhSCkOn8R0uvV6e tCNX2eY1RQd6G#f0020
- 84. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices ScienceDirect
- 85. https://www.metal-am.com/articles/material-selection-for-the-3d-printing-of-injectionmoulding-tooling/
- 86. ISO/ASTM 52900:2021(en), Additive manufacturing
- 87. Ultimaker Cura: Ultimaker Cura: Powerful, easy-to-use 3D printing software
- 88. PreForm software

EMERALD

Page | 114

The Education, Scholarships, Apprenticeships and Youth Entrepreneurship

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC

MECHATRONIC SYSTEMS

E-toolkit –

NEW MATERIALS USED FOR

THE DEVELOPED BIOMIMETIC

MECHATRONIC SYSTEMS

Project Title	European network for 3D printing of biomimetic mechatronic systems 21-COP-0019
Output	O2 - EMERALD e-toolkit manual for digital learning in producing biomimetic manufacturing method
Module	 New materials used for the developed biomimetic mechatronic systems Database used for the smart (intelligent) materials properties
Authors	Diana BĂILĂ

Contents

1. Total Materia database – Quick search for alloys	
2. Total Materia database – Advanced Research for alloys	
3. Total Materia database – Search algorithms used for identification the u	nknown metallic
materials	
4. Total Materia database – Polymers, ceramics and composite materials	131
5. Conclusions	

Total Materia used for determination of the materials

properties

1 Total Materia database – Quick search for alloys

Total Materia is the world's most comprehensive materials database, having more than 20,000,000 property records for over 450,000 metallic and non-metallic materials presented in 26 languages. This database is world class quality, service and support, being trusted in over 160 countries, the smallest companies to global industry leaders all receive our complete specialist technical support. Total Materia is proprietary algorithms for the identification of unknown materials, using composition data from analytical sources, find matching materials, property data and equivalents in just seconds. This database is the largest single collection of advanced property data on the planet, having more than 150,000 materials with stress strain, fatigue data and much more for the design community, being a free page. This database permits lightning fast access for finding and comparing equivalent materials, existing international cross-references for 450,000 materials from 74 standards providing over 15,000,000 material connections.

Fig.1. Total Materia database

Working together for a green, competitive and inclusive Europe

Total Materia database help solve diverse engineering challenges from the simplest to the complex, being used in: medicine industry, aerospace industry, energy industry, automotive industry, machinery industry, engineering industry, diversified.

By example, for the alloy Ti6Al4 V, we want to know the chemical composition and the mechanical properties, and we click on Advanced Search, as in the Figure 2.

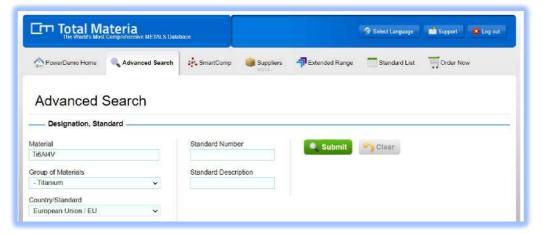
PowerDemo Home	Real Advanced Search	SmartComp	Suppliers	Textended Range	Standard List	Order Now
Advanced	Search					
Designation, Sta	ndard					
laterial		Standard Numb	er	Submit	Clear	
Froup of Materials		Standard Descr	iption			
All	~					
ountry/Standard						
- / Approval	~					
— Full Text Search	-					
earch for						
		le.				

Fig.2. Advanced Search

In the figure 3, it is presented the choice of the standard in function of the country and group of materials.

It was choosing the alloy Ti6Al4V, making part of Titanium materials and was choose European Union standard, as in Figure 3. It must specify the material type, as example Bulk Materials, in Figure 4.

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.



Page | 118

Fig.3. European Union standard choice

	Aateria :: Subscribers Hom	× +					- 0	×
→ C portal.totalmateria.com/en/s	earch/quick					G 🕶 🖻 🕸	* 🗆 🔇	DE
🖣 Grnail 🧧 VouTube 🧛 Maps 💁 Translate	Alews							
TO UK SEARCH	ESCOREED INVICE	DIDIPALE ENOSIO	COMPLIANCE SUPPLE	RS. SNARTCOMP	COPORTER 1704CHER	MANERIAL CONSIGNE		
		Quick Search Adva	nced Search Standa	rd list Material Disc	covery			
P	Madorial Desiden Bulk Materials Bulk Materials 3D Materials Adhesives Cantinas		× Staidard	✓ Froduc		earch C		
🕑 Welcome Irina Bail			490K	80	20K	25M /		
MESSAGE SAVE	Q. ED SEARCHES	* FAVORITES	NUMBER OF MATERIALS	STANDARD ORGANIZATIONS	DATA SOURCES	DATA POINTS		
Subscription expires: 04/05/2023 (a Want to return to the old version of th Click here to go back		rm?	Resource Hub UPCOMING WEBINARS Green Line PRODUCT COMPLIANCE AND	Predictor	GUIDED TDURS. Total Materia Resolving Material	archand standard	• • • F	2)

Fig.4. Material type

In figure 5, it is specifying the material group and in this case, nonferrous alloys and European standard choice, as in figure 6.

Working together for a green, competitive and inclusive Europe

Material group ✓

Q
Search

>
Ferrous Alloys

>
Nonferrous Alloys

>
Polymers

>
Ceramics

>
Composites

>
Fibers

>
Cements

>
Honeycombs

>
Foams

>
Wood

European Union/EU × 🗸	
V EU	•
🗌 Finland	
SFS	
France	_
AFCEN	
AFNOR NF	
AIR	
D BV	
🗌 Germany	
DIN	

Page | 119

Fig.5. Material group

Fig.6. European standard choice

	Total Materia	he world's most comprehe	5515412564194641946	treve en es			etric 🕐 L	nperial Units (The second	D Log out	
	TOTAL SEARCH	Extended RANGE	O BATA PLUS	ENVIRO	COMPLIANCE	SUPPLIERS	SWARTCOMP	EXPORTER	TRADUER	MATERIAL CONSOLE		
	+		Quick Sea	arch Adv	anced Search	Standard list	Material I	Discovery				
P	Quick Search											
	are currently viewing results which con				erial designation	n.						
	u would like to view more possible mat	tches for your search,	, please <u>click h</u>	ere.						Printer and Printe	Concernant Property	MINOR
	u would like to view more possible mat It(s) found: 21.	tches for your search,	please <u>click h</u>	ere.					E	2 Non-III Providence Con- transmission (Con- transmission)	(milde) (- 108	W40172
Resul		tches for your search,		<u>ere.</u>		COUNTRY / PI	RODUCER		11.000	IFICATION	(miller) (- 108	99911) 772.
Resul	ir(s) found: 21		IDARD	ere.		COUNTRY / PI France	RODUCER		CLASS			9941172.
Resul F+	it(s) found: 21 MATERIAL	STAN	IDARD DR NF	ere.			RODUCER		CLASS	IFICATION	owdered metals	1911 FA
Resul # + 1	It(i) found: 21 MATERIAL MIM-TIGAI4V-600	STAN	IDARD DR NF	ere.		France			CLASS Ferrou Ferrou	IFICATION 1 Alloys / Sintered po	owdered metals	WSIII 72.
Resul F+ 1 2 3	it(s) found: 21 MATERIAL MIM-TI6AI4V-600 MIM-TI6AI4V-600	STANI AFNO ASRO	IDARD DR NF	ere.		France Romania			CLASS Ferrous Ferrous	IFICATION 1 Alloys / Sintered po 1 Alloys / Sintered po	owdered metala owdered metala owdered metala	
	Itil) found: 21 MATERIAL MIM-TI6AI4V-600 MIM-TI6AI4V-600 MIM-TI6AI4V-600	STANI AFNO ASRO B.S.	IDARD DR NF	ere.		France Romania United Kingdor	1		CLASS Ferrou Ferrou Ferrou	IFICATION 1 Alloys / Sintered po 1 Alloys / Sintered po 5 Alloys / Sintered po	owdered metals owdered metals owdered metals	m4111 77.
Resul F+ 1: 2: 3: 4: 5:	MATERIAL MIM-TI6AI4V-600 MIM-TI6AI4V-600 MIM-TI6AI4V-600 MIM-TI6AI4V-600	STANI AFNO ASRO B.S. BDS	IDARD DR NF	ere.		France Romania United Kingdol Butgaria	1		CLASS Ferrow Ferrow Ferrow Ferrow	IFICATION 1 Alloys / Sintered po 2 Alloys / Sintered po 5 Alloys / Sintered po 2 Alloys / Sintered po	owdered metals owdered metals owdered metals owdered metals	WOIL 72
Resul F+ 1 2 3 4	MATERIAL MIM-Ti6Al4V-600 MIM-Ti6Al4V-600 MIM-Ti6Al4V-600 MIM-Ti6Al4V-600 MIM-Ti6Al4V-600	STANI AFNO B.S. BDS CSN	IDARD DR NF	ere.		France Romania United Kingdor Bulgaria Czech Republic	n -		CLASS Ferrou Ferrou Ferrou Ferrou Ferrou	IFICATION s Alloys / Sintered po s Alloys / Sintered po s Alloys / Sintered po s Alloys / Sintered po	owdered metals owdered metals owdered metals owdered metals owdered metals	

Fig.7. Different Ti6Al4V producers

When we give a quick search, as in figure 7, are presented different Ti6Al4V producers from different countries and using different standards.

Page | 120

Fig.8. Ti6Al4V standard Fr AFNOR NF-Mechanical properties

The results it is the mechanical properties of the alloy Ti6Al4V, conforming of FR AFNOR NF standard, as in figure 8 and figure 9.

TEMPERATURE	PROPERTY /	VALUE	
□ > 300°C	VIELD STRENGTH, NPO.2	≥ 600 MPa	III view details
() 100 - 300°C	TENSILE STRENGTH	≥ 800 MPa	III view details
□ 30 - 100°C	ELONGATION, A	≥ 3 %	III view details
🖸 0 - 30°C			
[] <0°C	ROCKWELL HARDNESS (HR)	30	III ylew details
	VICKERS HARDNESS (HV)	300	III ylew details

Fig.9. Mechanical properties Ti6Al4V at the temperature between 0-30°C

	72.5				
ELECTED REFEREN					
EN [SO 22068: 2	054/Sintered-metallinjec	fion-moulded nuterials - S	pecifications		
attena	WHERE	1942	NUTE	Gira Humbert	CHITECHL RWW NATERIALS CONSIGN PONDIALS
h.t.	6.0 - 2.0	16		23(20) 502/0	
¢.	5-10-2 -			2442-44-0	
N.	193	75		2742-27 35 87728-88-9	
D	x 0,4	34		7733-64-7: 17778-60-2	
Other total	64,5	w.,			
0.			Adamor:	(7442-332-6	Ubled
i i	3.11 - 0.0	3		2640.42.2	ckinia

Fig.10. Chemical composition of Ti6Al4V

Working together for a green, competitive and inclusive Europe

In figure 9, the database gives us all information about the mechanical properties of the alloy Ti6Al4V in function of the temperature used in the process where it is used this material. In figure 10, the database shows us the chemical composition of the alloy Ti6Al4V.

2. Total Materia database – Advanced Research for alloys

In the case of Advanced Research, by example for the Ti6Al4V, producer Vday Additive Manufacturing Technology Co., it is given the classification of different Ti alloys producers, as in figure 11.

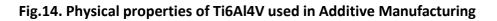
				G
	too found: 354			
₹+	MATERIAL	STANDADD	COUNTRY'/ PRODUCER	CLASSIFICATION
	TIGAI4V	PROPRIETARY	Viday Additive Manufacturing Technology Co., Ltd.; 3T Additive He	Nonferrous Alloys / Titeriu 3D Materials
	TI-GAI-4V	AFNORME	Fighe	nanferrous Allays / Titania
	TI-6AI-4V	AS	Australia	Nonferrous Alloys / Titaniu
	TI-6AI-4V	ASRD	itomania	Nonferrous Alloys / Titanis
	TI-6AI-4V	B-5.	United Kingdom	Nonferrous Alleys / Titanis
	TI-6AI-4V	EDS	Bulgada	Nonferroun Alkrys / Titanh
	Ti-6AI-4V	C5N	Casch Republic	Nonherrous Alloys / Titaria
	TI-6AI-4V	10N	Germany	Nonferrous Alleys / Titaniu
	TI-6AI-4V	EN	European Ultilan	Nonferrous Alloys / Titaniu
0	TI-6AI-4V	GII	Chipa	Nonferrous Alloys / Titaniu

Fig.11. Ti6Al4V alloy used in Additive Manufacturing

6AI4V (PROPRIETARY)	Y Gui, Lill, ST Addition Manufacturing Lid shares (ST 700 Lid.), How and Faces of Desiring of Manufacturing Control Maturation (St 700 Lid.).	na Aotà e Marakatang Shiri, ABSUS APM Nine Mala	teristi Sandarya	ay, e dar, Sentona, Arcan AS, Melonalisis Signat Panal (part of M	a the	N Computer
Proceediances - Nonferonau 43630 (Translam 30 Maganiau						 Minikal misseriles Real Tradition Traditional
	M. VITIOL ROPOUD	30., 04053 (033404390)		P WHORE	*	* Exclassible
Vanishmeret, hus.2, 244 – 1120 2446 Samta Samta Vanis, S. Ber, – 1200 4405 Handa Samta A. 335 – 1146	Frankan et kannere (1969 – 124 dPa Second, et Anagonae Institution (1710) (188 – 2.8 MPT/97) (1989) (1710) (188 – 2.8 MPT/97)	SRS 8 46 Uthat	101 09#	Last establish 2002-bit Power and Properties, Properties, Contract on these Teachers		Constanting databases Constanting Constanting Constanting Constanting Constanting Constanting Constanting Constanting
WITHETED VIEW						terreruit
A reside A fund			re l'uuruk			althouse Cares
CT + 340%0		vice steening weps	744-1110.3 Mil	a view photo a		Company
C) bin Jowe		TENDEL PERMIT	840 - 1282.4 MP	n ≣ rinasteola		Vaalturskiik * 2matatoo
(C) 0-30'C		EDHERTON A.	3.5 - 18 %	= <u>minihilitz</u>		Direct legation
£1+680		SPONETION OF 65PA	40.%	≡ abothtate		Alternative Supplier
•		antonic indication (rel)	294	🚍 view destala		
		RECOMPLETO SHERE (1991)	25 - 320	alottik neiz 🗧		
		water and the second second second		+ ren matala		

Fig.12. Mechanical properties of Ti6Al4V used in Additive Manufacturing

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.


Working together for a green, competitive and inclusive Europe

In the figure 12, are presented the mechanical properties of Ti6Al4V used in Additive Manufacturing, for different temperature domains. The chemical composition of Ti6Al4V used in Additive Manufacturing is given in the figure 13. In the figure 14, the physical properties of Ti6Al4V used in Additive Manufacturing, for different temperature domains.

REFERENCES					
31 Additive Manula	turing Utd. Product Data Sheets / Available	atl www.3t-em.com, visited 2019			
Arcem AB, Product	ata Sheets / Available atl www.arcam.com	r, visited 2018			
🔵 Digital Metal, Produ	t Data Sheets / Available att www.digitalm	etal.tech, visited 2021			
Heraeus Additive M	nulacturing GmbH, Product Data Sheets /	Available at: www.heraeus.com, visite	d 2020		
Meltio, Product Date	Sheets / Available at: https://maltio3d.com	n/, visited 2022			
Shanghai Research	institute of Material, Product Data Sheet / /	Aveilable at: www.snim.com.cn, insited	2022		
SELECTED REFEREN	TE				
	acturing Ltd, Product Data Sheets / A				
3T Additive Manuf	acturing Ltd, Product Data Sheets / A VALUE	vailable at: www.3t-am.com, visi UNIT	ed 2019 NOTE	CAS NUMBER	CHITICAL HAW MATERIALS CONFLICT MINERALS
CRITERIA				CAS RUMPER 7420-90-5	CRITICAL RAW MATCHIALS. CONVLICT MINERALS
	WALLE	UNIT		0.110040405050	CRITICAL HANF MATERIALS CONFLICT MINERALS
GRITERIA Al C	VALUE 5.50-6.76	UNIT SE		7420-90-8	
GRITERIA Al C	VALUE 8.50-6.75 \$0.08	0807 82 86		7420-90-5 7440-44-0	
CRITERIA Al C Ee	VALUE E.SC- 4.75 40.08 40.3	0007 62 56 56		7420-90-8 7440-44-0 7435-89-6	
cettera Al C Fe H	VALUE E.SD-4.75 40.08 40.3 40.3	URT Ki Si Si Si Si		7420-96-5 7440-44-0 7435-59-5 1333-74-0	
CRITERIA Al C Ee H N	VALUE E.SC 6.75 40.08 40.015 40.015	0007 56 56 56 55		7420-96-8 7440-44-0 7435-80-6 1333-74-0 7722-87-8(17778-88-0	

Fig.13. Chemical composition of Ti6Al4V used in Additive Manufacturing

EMPERATURE	PROPER	TY / VALUE
□ > 300°C	MODULUS OF ELASTICITY	100 – 124 GPa
_ 100-300°C	DENSITY	≥ 2.5 kg/dm³
30-100°C	COEFFICIENT OF THERMAL EXPANSION (CTE)	7.6 - 7.9 10 ⁻⁶ /°
✓ 0 - 30°C	MELTING TEMPERATURE	1600 - 1750 °C
□ < 0°C	PELLING TEMPERATURE	1000-1750 0

Working together for a green, competitive and inclusive Europe

eference	Descriptions
rcam AB, Product Data Sheets / Available at: www.arcam.com, visited 2015	Hot Isostatic Pressing (HIP) at 920°C for 120 minutes, 100 MPa.
T Additive Manufacturing Ltd, Product Data Sheets / Available at: www.St- m.com, visited 2019	Stress relieved at 800°C for 2 hours in a vacuum furnace with specimens on build plate.
lettio, Product Data Sheets / Available at: https://meltio3d.com/, visited 2022	Stress Relief - Heat up to 730°C in 2 h - Hold at 730°C during 2 h - Cool down to Ambient T ^a in 1 h 50 min

Fig.15. Heat treatment used for the alloy Ti6Al4V used in Additive Manufacturing

The database gives us details concerning the heat treatment used for the alloy Ti6Al4V used in Additive Manufacturing, as in the figure 15.

· · · · ·	s powdered;	Spherical Shape and a fe	w satellites; SEM image
GENERAL INFOR	MOITAM		
As powdered			
Microstructure		Spherical Shape and a few satellites	
Comment		SEM image	
	1		
10 µm	Microstructure	Detector = SE2 EHT = 10.00 kV WD = 8 mm	Mecseneti

Fig.16. Metallography details for Ti6Al4V powders used in Additive Manufacturing

Working together for a green, competitive and inclusive Europe

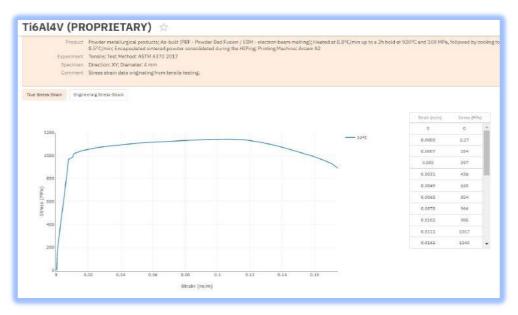
Total Materia gives us details concerning the metallography of the alloy Ti6Al4V used in Additive Manufacturing, as in the figure 16 and the tribology is given in figure 18. In figure 17 are presented the similar materials with the same composition existing on the market.

The material does not have direct properties. Similar materials that have these properties are listed in the table below Click on the material to view properties. 113 154 MATERIAL STANDARD COUNTRY 7 PRODUCER EQUIVALENCE CATEGOR S TI 6408J (TIAI6V4AJ) JIS Composition 100% ÷ Jepan TAGV AFNOR NE France Composition \$20% 4 Ti 6Al-4V Grade 5 ÷ PROPRIETAR Allegher s. TI-6AI-4V ONORM Austria Composition 100% TI-6Al-4V NEN Composition 100% + Belgium TI-6AL-4V NER Brezil Composition 100% ÷. * 🗆 Ti-6Al-4V BDS Bulgaria ion 100% Ti-6AI-4V CSN Czech Republic eition 100% 4 A TI-6AI-4V EN -** European Un Composition 100% Ti-6Al-4V SPS Finland 20 tion 10036 ÷

Fig.17. Similar Materials with the same composition existing on the market

O Tribology				
CONDITIONS (3)				
Tested Material - Heat treatment: As Built				
O Tested Material - General comment: Standard Grade				
C Tested Material - General comment: Performance Grade				
SELECTED CONDITION				
Tested Material Heat treatment: As Built				
Tested Material				
PROPERTY	T(°C)	VALUE	UNIT	NOTE
Surface Roughnees		10	μm	Ra
Surace Houghnees		80	μm	Rz
Reference for the selected material and condition				
1 Airbus Apiverke GmbH, Product Data Sheets / Available at: www.apiverke.de, v	isited 2018			
All references for the selected material				
1 Airbus Apivorks GmbH, Product Data Sheets / Available at: www.apworks.de, v	isited 2018			
a cheer options and of the part part of the location and the part of the part				

Fig.18. Tribology properties of Ti6Al4V used in Additive Manufacturing



Working together for a green, competitive and inclusive Europe

For welding and brazing are given different variants similar alloy of Ti, as in figure 19. In the figure 20, it is presented the stress strain diagram for Ti6Al4V used in Electron Beam Melting (EBM). The fatigue data is given in the figure 21, by ARCAM company.

Weld	Joints			
	The material does not have direct propert Similar materials that have these propertie Click on the material to view properties.	ies. are listed in the table below.		
u,	MATERIAL	STANDARD	COUNTRY / PRODUCER	EQUIVALENCE CATEGORY
1	YTAW 640 E	KS	Koree	Composition 100%
2	AB-1	SAE	United States	Other sources
3	B 265 Grade 5	ASTM	United States	Other sources
4	B 265 Grade TI-6AI-4V	ASTM	United States	Other sources
б	ERTI-5	AWS	United States	Other sources
6	5 Ti 6402	ONORM	Austria	Other sources
7	5 TI 6402	NBN	Belgium	Other sources
ß	S Ti 6402	aps	Bulgaria	Other sources
9	5 TI 6402	CSN	Czech Republic	Other sources
	S TI 6402	EN	European Union	Other sources

Fig.19. Different variants similar alloy of Ti, used in welding and in brazing

Fig.20. Stress strain diagram for Ti6Al4V used in Electron Beam Melting (EBM)

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

O MECHANICAL PROPERTIES	IN PRYSICAL PROPERTIES	DC CROSS REFEREN	CINE	↑ TRACKER
Visid Obergen, Fud. 2, 744 – 1140. Tesula Intergen : 543 – 1282.4 Clongeriov, 6, 3.3 – 18 %		din ⁴	0 103 ombai oshar	Last sudistic 2022-12 Micchanical Properties, Physical Properties, Composition, Heat Transmust
Fatigue Data	ameters 1			
ELECTED CONDITION				
Product Powder metall Experiment Rotating beam	urgical products; As-bailt (PBF - Powder Bed Fusion / E 9 Test temperature; 20 °C les for fatigué strength > 1E7	BM - electron beam melting); Hot leostatio P	ressing (HIP) at 920°C for 1	20 minutes, 100 MPa
Product Powder metall Experiment: Rotating beam Comment: Number of cyc	(Tast temperature) 20 °C		reesing (HIP) at 920°C for 1	to minutes, 100 MPa
Experiment Rotating beam Comment Number of cyc	i; Tast temperature; 20 °C les for fatigue strength > 127			20 minutes, 100 MPa Number of cycles

Fig.21. Fatigue data given for Ti6Al4V used in Electron Beam Melting (EBM)

ROPERTIES					
Add property					
schanical Properties	>.	🔲 Brinell Hardness (HB)	Elongation, A (%)	Reduction of Ares (%)	
ysical Properties		Rockwell Hardness (HR)	Tensile Strength (MPa)	Vickers Hardness (HV)	
emital Composition 💮		Vield Strength, Rp0.2 (MPe)			

Fig.22. Equivalents finder

The database permits us to find equivalents finder in function of the Brinell hardness [HB], Rockwell hardness [HR], Yield strength Rp0,2 [MPa], elongation A [%], tensile strength [MPa], reduction of area [%], Vickers hardness [HV], modulus of elasticity [GPa], density [kg/dm³], melting temperature [°C], coefficient of thermal expansion (CTE) (10⁻⁶/°C) or chemical composition, as in figure 22.

Total Materia give us the material description for the alloy Ti6Al4V used in Electron Beam Melting (EBM), specifying the applications domain, in the case of powder, is given the particles size distribution, additive laser manufacturing systems type that used this powder, the biocompatibility, as in figure 23.

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Working together for a green, competitive and inclusive Europe

		Application	It is used in a veriety of medical applications which require high strength.			
Material De	escription	Source	Diğital Metal (part of Higana's Group Company)			
	white	Connect	30 printing Haddine marakataring - Ender Reting Radrine: DM P200			
Source	Meltia	Source	Katerialise			
Comment	10 printing (Additive nanufacturing) - Direct Energy Deposition (DED) Machine: Melico M450 Titanium alloy with high strength, low density, high fracture toughness, excellent corrosion re	correct and superior biocompatibility	31 printig Mähre trankstonig - Snect Medizae Status (BMS) Tasium allap tär antibise sesällest mekaräsi proprise vitti verj ku spocifi selfa näronskon esälana. Analäsi lei Status of Antimera Stada.			
Application	Tools and prototypes, aerospace, manne, chemical	Application	Aeronautics, Functional prototypes, solid end-use parts, medical devices and space parts			
Saurce	Optimal Material Technology CD.,,Ltd	Source	Arcan AB			
	30 proting (Additive manufacturing) - Selective Laser Melting (SLM) Machine: Concept Laser ND, EOS M 290. It has high purity, low oxygen content and good fluid by. Particle sits distribution: 13-53 gam. Hall flow rate: 36 x (Stig Shanghal Research Institute of Materials		33 prince Holdine mandatoring Thanima aliny with he high strength, good machinability, iou weight soft and outstanding corresion maistance.			
Comment			Typically used for, direct manufacturing of parts and prototypes for racing and earnspace industry, biomechanical applications, such as implants and prosthesis, marine applications, chemical industry, gas turbine			
			Sitavie			
Source			30 printig (Addine ravalacular) of - Inter Xiela Laser Streing (IMLS) Compiler escience, dreight, temperature escience and weight reduction.			
	10 printing (Additive manufacturing) - Selective Laser Melting (SLM), Election Beam Melting (EBM) Particle size energy: 15-45 pm. Particle size distribution days 5 30 pm. Liquidhy Flavazbility: 5 404.		Sondasys sp. z na.			
Comment			30 printig (Addine mandraturing - Secrite Lazer Melting (SM) Theiran allo provine.			
Source	Proto Labs, Inc.	Sturre	AURDIS ATVORKS GINH			
Comment	10 printing (Additive manulacturing) - Direct Metal Laser Sintering (DMLS) Nechanical properties of TGA/44 are comparable to wrought tilanium for tensile strength, ek	Correct	30 princip (Addree marakaning-Leer Privet Belt Addree Leer Readwaing (RUN) Light reight barrun als y proke. Scellert instancia properies and conscion existance. Smallers with Trickees (mn); 1.0			
Application	It is used in a variety of medical applications which require high strength.	Applization	Arropae, notor racing, and also for the production of biomedical implants.			
ource	Heraeus Additive Manufacturing Gmbl	Н				
omment	3D printing (Additive manufacturing) - La High strength titanium alloy with low we Particle Size Distribution (μm): 15-45 an	ight, good biocompatibility a				
pplication	Medical, aerospace and automotive					
ource	3T Additive Manufacturing Ltd (former	3T RPD Ltd.)				
omment	3D printing (Additive manufacturing) - D Machine: EOSINT M290, EOSINT M280, Titanium alloy powder. Corrosion resista	EOSINT M400, EOSINT M4	00-4			
pplication	Prototyping, engineering, biomedical im	plants, small series product	ion			
ource	Vday Additive Manufacturing Technolo	ogy Co., Ltd.				
omment	3D printing (Additive manufacturing) - So Titanium alloy powder. High strength to		, Electron Beam Melting (EBM) al properties, excellent corrosion resistance, good biocompatibili			
	Medical implants, automotive, aerospac					

Fig.23. Material Description - for Ti6Al4V used in Electron Beam Melting (EBM)

In the figure 24, it is presented how can discovery the material type, choosing the domain for Brinell Hardness [HB], for the temperature 0-30°C on X axis, meaning from 500 to 800, and the compression modulus [GPa], for the temperature 0-30°C, from 100-124, and are given 2 group types, ferrous alloys and nonferrous alloy. In figure 25, the database permits us to see the material properties if it is known the standard ASTM, the standard number.

Working together for a green, competitive and inclusive Europe

ALLER'S PROPERTIES.																12144	torian)
ada		(1)	-				_			3					1		
Entre E Handmass (HE)		544								3							
0-1046	× •	ŝ															
a a		1								1							
405 (D) 1/g		1 300								1							
Sarphi		2.00															
Conception Notice (Cfa)		÷															
Condension of the local		1999.1	Contraction of the local division of the loc														
C-104C			37		159		232 258	350	-	+52 518	324		457	788 . 7	1		
100 101 (3) (ré			-	100	149	228	253 568		Second 1	und sizz (119)		610		- 10 -	28 830	100	300
> Sheerendin Char															- 110	exel 14).	
		Harris fa	40.0				Course Horney	en (196)			14	egradier N	WHAT (PA				0
		> 📴 r	rices Alleys				30-316				**	- 22.0					0
		× 20 ×	etercises No-ep				0+980				40	+200					CF .
		> 🛄 P	farrers				38 - 1,47				6	011 - 28					Щ÷
		1 22 0	ran ita				10-80				40	1-161					D) .

Page | 128

Fig.24. Material discovery

Standard list					
		E.m.s		when the of Lines of striken.	Q. Smarth Chiar
		1.110	94)		Brown Street and
	9 68	Link			and a second second
1		1.115			WTERIALS D - OCHENSIONS C - CONTINUES & - HE
	9 634	1.185			and a second second
	STANDARD NUMOTR	LAST VERSION	TCS NUMBER		WTERIALS D - OCHENGTONS C - COATTINGS R - HI

Fig.25. Standard list

3. Total Materia database – Search algorithms used for identification the unknown metallic materials

For the chemical composition Co 54,31 %, Cr 23,08 %, Mo 11,12 %, W 7,85 %, Si 3,35 % and Mn, Fe < 0,1, using the algorithms of the Total Materia database, it will identify the material with this chemical composition, as in the figures 26 and 27.

anaral Information		
Remark Demand New 294	 	
Incharacal Properties		
Prysitial Attion films		
pendal limited.		

Fig.26. Algorithms used for identification the unknown materials

Page | 129

ieneral Information					
hemical Composition (%)	- S	elect			~
lechanical Properties	Co:	50	1	55	Not Allowed 🕚 🗙
Physical Properties Special Search	Cr:	20	10	24	🗌 Not Allowed 🌒 🗙
	Mo:	10	· · ·	12	🗌 Not Allowed 🕚 🗙
	w:	5		10	🗌 Not Allowed 🕚 🗙
	si:	2	-	4	🗌 Not Allowed 🌒 🗙
	Mn:	0	(in	1	□ Not Allowed ① 🗙
	Fe:	0	-	1	□ Not Allowed ● ×

Fig.27. Chemical composition selection

When we want to change the chemical composition, it must click on clear.

the	much Comparation (N). Car $4\pi + 40$ AND $0.100-30$. X			
		Cill =+ Add search orderse		
-			ANO -	
-	Adel search criteria			
G	SEARCH CLEAR			
~	CLEAN			
mi)	((0 found: 95			
÷	MATEHIAL	STANDARD	COUNTRY / PRODUCER	CLASSIFICATION
+	MATEHIAA 2.4778	STANDARD AFNORMF	COUNTRY / PRODUCER FIDOW	
÷				Numferrous Allays / Cob
÷	2.4778	AFNOR NF	Fighce	Norrferroze Altops / Cob
	2.4778 2.4778	AFROR MF ASRO	Fighty Romania	Norderrous Alloys / Cob Standerrous Alloys / Cob Norderrous Alloys / Cob
÷	2.4778 2.4778 2.4778	AFRORMF ASRO 8.5	France Romania United Kingdom	Numferroze Alloys / Oob Nemferroze Alloys / Cob Nonterroze Alloys / Cob Nonterroze Alloys / Cob
+	2.4778 2.4778 2.4778 2.4778	AFNOR NF ASNO 8.5 808	France Romania United Kingdom Bulgaris	Hantherinova Aktoryk / Cob Hantherinaa Aktoryk / Cob Hantherinaa Aktoryk / Cob Hantherinaa Aktoryk / Cob Hantherinaa Aktoryk / Cob
÷	2.4778 2.4778 2.4778 2.4778 2.4778 2.4778	AFRORMF ASNO 8.5. 808 CEN	France Romania United Kingdom Bulgarite Creent Republic	CLASS FIZATION INVERTIGATION INVERTIGATION Internet Alloys / Cob Internet roug Alloys / Cob Internet roug Alloys / Cob Internet roug Alloys / Cob Internet roug Alloys / Cob
+	2.4778 2.4778 2.4778 2.4778 2.4778 2.4778	AFRORMF ADRO B.S. BDS CDN DDN	France Romania United Kingtom Bulginia Careh Republic Germany	Hantherious Albeys / Oob Heimherious Albeys / Oob Hantherious Albeys / Oob Hantherious Albeys / Oob Hantherious Albeys / Oob Hantherious Albeys / Oob

Fig.28. Co-Cr alloy results that have the respective chemical composition

In the figure 28 are presented the Co-Cr alloy results that have the respective chemical composition.

The first is the material 2.4778, standard AFNOR NF, France and if we give click, can know the mechanical properties, the chemical composition, and its applications. In the figure 29 is presented the determination of the material: CoCr28 and their properties. The material description is presented in the figure 30.

Country/Standard France / AFNOR NF Moterial group Nonferrous Alloys / Cobalt			
O MECHANICAL PROPERTIES	W PNYSICAL PROPERTIES	JC CROSS REFERENCING	P TRACKER
Yield Strength, Rp0.2.2.235 MPa Tanélia Strength ≥ 490 MPa Elongarton, A ≥ 6.%	Density 8.3 kg/dm* Thermal Conductivity 8.5 W/(m*C) Hear Capacity: 500.3/(bg*C)	41 0 Ali Official	0 Last update 2022-0 Other Composition
NTHETIC VIEW DETAILS VIEW		PROPER	TY / VALUE
			≥ 235 MPa
[] > 300°C		VIELD STRENGTH, RP0.2	
☐ >300°C ☐ 100-300°C		VIELD STRENGTH, RP0.2 TENSILE STRENGTH	
			≥490 MPa

Fig.29. Determination of the material: CoCr28 and their properties

2.4778					5 B A	
	en <u>GeCHEIZE</u> en France J AFNOB NF op Nosforrou Alloys J Cosott					
O HECH4	NICAL PROPERTIES	NE SHIVUZCAL SECONDITIES	oc chois herebring	P. TRACKER		4
	d Strength, Roll J. 2 225 MPA Temple Strength 2 490 MPa Disrighten, 3: 2 4 5	Deviativ B.3. bg/dativ Tenneral Fundantinis B.5. Within 20 Heart Concerny, 100-3((bg/41)	41 0 0 48 Officei Diner	Comparison 2022-09 Comparison		
Material D	escription					
Source	NF EN 50295: 2002 / Heat real	stant steel castings				
Comment.	Robalt tasic atoy					
Application .	For general purposes that for pr For evelic headings the maximum	essure applications) above 500°C. The maximum applicable op	erabling temperature 1200°C is valid for oxidation resistance in	clean natural air. In other atmosphere, this ter	nperature can differ widel	di.

Fig.30. Material description of CoCr28

4. Total Materia database – polymers, ceramics and composite materials

Total Materia database is used too for the polymers (Fig.31), ceramics and composite materials.

The database given 125 results of PLA types, as in the figure 32.

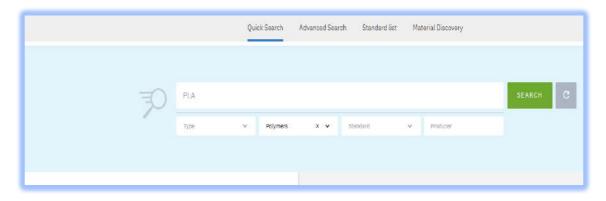


Fig.31. Total Materia database for the polymers

Resul	lt(s) found: 125			🖉 ADO TO MATERIAL LIST BURLOER 🛛 🔶 FORMAN
=+	MATERIAL	STANDARD	COUNTRY / PRODUCER	CLASSIFICATION
1	PLA	GENERIC		Polymers / Plastics, thermoplasts / Biopolymers (CA, CAB, PLA) / PLA 3D Materials
2	PLA++	PROPRIETARY	Breathe-3DP	Polymers / Plastics, thermoplasts / Biopolymers (CA, CAB, PLA) / PLA 3D Materials
3	PLA Crystal Clear	PROPRIETARY	Fillamentum	Polymers / Plastics, thermoplasts / Biopolymers (CA, CAB, PLA) / PLA 3D Materials
4	PLA Extrafil	PROPRIETARY	Fillamentum	Polymers / Plastics, thermoplasts / Biopolymers (CA, CAB, PLA) / PLA 3D Materials
5	PLA Filament	PROPRIETARY	Filament PM	Polymers / Plastics, thermoplasts / Biopolymers (CA, CAB, PLA) / PLA 3D Materials
6	PLA Plus ProSpeed	PROPRIETARY	Rosa 3D	Polymers / Plastics, thermoplasts / Biopolymers (CA, CAB, PLA) / PLA 3D Materials
7	PLA Premium Filament	PROPRIETARY	Airwolf 3D	Polymers / Plastics, thermoplasts / Biopolymers (CA, CAB, PLA) / PLA 3D Materials
8	PLA Prografen color	PROPRIETARY	Advanced Graphene Products	Polymers / Plastics, thermoplasts / Biopolymers (CA, CAB, PLA) / PLA 3D Materials

Fig.32. 125 results of PLA types existing on the database

In figure 33, are presented the mechanical properties of PLA crystal clear.

Database give us the manufacturing processes of PLA crystal clear, such as 3D Printing and temperature used in the manufacturing processes, as in figure 34.

Working together for a green, competitive and inclusive Europe

				=+ 🖪
Country/Standard PROPRIETARY				
Producer Fillamentum				
Material group Polymers / Plastics, thermople: 3D Materials	sts / Elopolymers (CA, CAB, PLA) / PLA			
	IN PHYSICAL PROPERTIES	CROSS REFERENCING	P THAC	KER
Tensile Strength: 50 MPe Tensile Strength: 55% Impact Strength: 55%/m ⁶	Hodunus of Elasticity 3.5 GPa Gensity 174 kg/dm ¹ Gists Tenn Tenn, 55 – 66 °C	No cross-referenced materials available. Use Equivalence Finder to search for similar m	Moohanipal P	2021-00 Toporting; Physical Properties, Henutepouring
			Processes	
NTHETIC VIEW ODD DETAILS VIEW				
TEMPERATURE		PROPERTY	/ VALUE	
TEMPERATURE		PROPERTY TENSILE STRENGTH		III view details
			i0 MPa	≅ vieu details ≅ vieu details
 ⇒ 300°C. 100 - 300°C 30 - 100°C 		TENSILE STRENGTH	50 MPa 55 %	
□ > 300°C . □ 180 - 300°C		TENSILE STRENGTH	50 MPa 55 % 55 %	III view.details

Fig.33. Mechanical properties of PLA crystal clear

Manufacturing Processes		
PROPERTY	VALUE	UNIT
3D printing machine settings Reference: Fillamentum, Product Data Sheets / Available at: www.fillamentu	im.com, visited 2021	
Heated Bed Temperature	50 - 60	°C
Printing Temperature	210 - 230	°C
Reference for the selected material and condition 1 Fillamentum, Product Data Sheets / Available at: www.fillamentum.com, visited 2021		

Fig.34. Manufacturing processes of PLA crystal clear

In the figure 35 is realized the material description for PLA materials, being specify that it is used in Fused Deposition Modeling (FDM) process.

Country/Stand	iard PROPRIETARY			
	ucer. Fillamentum			
Material gr	oup Polymers / Plastics, thermoplasts / E 3D Materials	liopolymers (CA, CAB, PLA) / PLA		
О месни	INICAL PROPERTIES	IN PHYSICAL PROPERTIES	DE CROSS REFERENCING	₱ TRACKER
Torville Strength SO MPa Torville Streng ≤ 5 % Inspect 3D englis ≤ 5 %J/m²		Mediana of Flanticity 3.5.5Pa Dennity 1.24 kg/dm² Gless Tren, Terra, 55 – 60 °C	No orosi-referenced materials available Use <u>Boundants Finder</u> to search to reimitar materials	Lass update 2021-08 Mechanical Properties, Physical Properties, Manufacturing Processes
Material [Description			
Source	Fillamentum			
Comment		ed; good chemical resistance to oils and greases, BPA free, styr ble in blue, green, orange and purple colors	ene free	
Form	Filament			
Form				

Fig.35. Material description for PLA filament

For ceramics, by example Hap, we obtain the results as in the figure 36.

НАр							SEARCH
Туре	~	Ceramics	× •	Standard	~	Producer	

Fig.36. Ceramic search

Quick Search			
u are summitly viewing results which contain per	of your search priteria as part of the metanial designation.		
ou would like to view more possible matches for	your search, please <u>plick here.</u>		
nal fait finanti n			Sector Contraction (1997)
MATERIAL	STANDAD	COOMENY / PRODUCESS	CLASSIFICATION
	PROPRIETARY	IDDesm	Deterrica / Technical cetetrics / Offer / Not specified (2)
3DMIX HAP			JD Hateriala
3DMIX HAP Shapal - M	PEGPRIETARY	CostraTely, Tru.	
	PSIDPRIETARY PSIDPRIETARY	Control fail, 1m. Tokupama Corporation	Deservices / Technical Oeterbics / Nitrodes / Aluminum situals (ANI)
Shapal - M			Denemica / Technical ceremica / Hitrides / Aluminum strute (ANI) Denemica / Technical ceremica / Hitrides / Aluminum strute (ANI)
Shapal - M Shapal Hi M soft	PECPRIETARY	Tokuyama Corporation	10 Pretrins Dennica J Technica Cenemics J Stinder, Aluminum thrule (ANO Dennica J Technica Cenemics J Stinder, Aluminum thrule (ANO Dennica, Technica Cenemics) Stinder, Aluminum thrule (ANO Dennica, Technica Cenemics), Stinder, Aluminum thrule (ANO

Fig.37. HAp variants existing on the database

In the figure 37, are given the Hap variants existing on the database, their producers, country and standards. In the figure 38 are given the mechanical properties of Hap.

untry/Standard PROPRIETARY		
Producer 3DCerem		
Material group Ceramics / Technical ceramice / Othe 3D Materials	r / Net specified (Z)	
MECHANICAL PROPERTIES	W PHYSICAL PROPERTIES	CROSS REFERENCING
Modelue of Rupture - 107 MPa	Density ≥ 1.5 kg/dm* Grain Size 2 E-03 mm	No cross-referenced materials available Use <u>Equivalents Finder</u> to search for similar materials
HETIC VIEW OD DETAILS VIEW		
HETIC VIEW DETAILS VIEW		PROPERTY / VALUE
		property / Value modulus of rupture 107 MPa
TEMPERATURE		
TEMPERATURE		
TEMPERATURE > 800*C 100 - 800*C		

Fig.38. Mechanical properties of HAp

Material D	escription
Source	3DCeram
Comment	Hydroxyapatite (HAP), calcium phosphate; excellent bioactivity, good osseointegration Ca/P ratio = 1.65 - 1.82
Application	For tibial osteotomy wedges, intervertebral cages, cranial implants, bone substitutes, spine implants, orthopedic implants
Form	Paste
Processing	3D printing (Additive manufacturing) - Stereolithography (SLA), Sintering Machine: Ceramaker C900, Ceramaker C100

Fig.39. Material description of HAp

Hap is used in additive manufacturing in SLS and in SLA, using Ceramaker C900 or Ceramaker C100, the platform gives us inclusive information about the manufacturing systems that used this material. Hydroxyapatite is used as paste in the additive manufacturing process to obtain tibial osteotomy wedges, intervertebral cages, cranial implants, bone substitutes, spine implants or orthopaedic implants, as in the figure 39

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Concerning the composite materials, by example plywood, the database give us 3 results, such in the figures 40 and 41.

plywood						SEARCH C
Туре	~	Composites x v	Standard	~	Producer	
		Q Search				
		Ferrous Alloys Nonferrous Alloys Polymers				
		Ceramics Composites Fibers	OK	80	20K	25M
	*	Cements Honeycombs	R OF IALS	STANDARD ORGANIZATIONS	DATA SOURCES	DATA POINTS
ARCHES	FAVORIT	Foams Wood				

Fig.40. Quick search of plywood

Result(s) found: 3							
=+	MATERIAL	STANDARD	COUNTRY / PRODUCER	CLASSIFICATION			
1	Class I	GB	China	Wood / Wood-based panels / Plywood			
2	Class II	GB	China	Wood / Wood-based panels / Plywood			
3	Class III	GB	China	Wood / Wood-based panels / Plywood			

antry/Standard China / GB Material group Wood / Wood-based panels / Phywo			
MECHANICAL PROPERTIES	IN PHYSICAL PROPERTIES	CROSS REFERENCING	🏞 талскея
Flexural Strength 32 – 32 MPa Bond Strength 30.7 MPa	Mooplus of Elaboraty 2 – 5,5 GPe Visiting Contains 5 – 54 %	No cross-referenced materials subliable Use <u>Equivalents Finder</u> to search for similar materials	Last update 2010-05 Weimanisas Propartiae: Physical Proparties
HETIC VIEW			
TEMPERATURE		PROPERTY / VALUE	
TEMPERATURE		PROPERTY / VALUE FLEXURAL STRENGTH 12 - 32 M	Pa III slow dati
			Pa III slow data III slow data
□ > 500°C		FLEXURAL STRENGTH 12-32 M	

Fig.42. Mechanical properties of plywood class I

In the figure 42 are presented the mechanical properties of plywood class I. In the figure 43 is presented the material description of plywood class I, that can be used in outdoor environment.

Material Description					
Source	GB/T 9846: 2015 / Plywood for general use				
Comment	Plywood which can pass boiling test and can be used in outdoor environment				

Page | 136

Fig.43. Material description of plywood class I

5. Conclusions

In the last years, the materials developed very much, appeared different news materials with very interesting properties realized by different world companies, that can be used in Additive Manufacturing and in other manufacturing domain to realize medical parts or for industrial domain and grace to this database, all materials developed are introduced in this platform, giving us the possibility to choose, the chemical composition, the mechanical properties, or using the search algorithms, finding the unknown material, in function of the chemical or mechanical properties.

The implications of the present research would be interesting for the manufacture by Additive Manufacturing different medical parts, using different materials using the database Total Materia, or others to know the mechanical and chemical properties that are very important to establish the manufacturing parameters and manufacturing systems and tools.

References

- 1. Ratner Buddy D., Hoffman Allan S., Schoen Frederick J., Lemons Jack E.- Biomaterials Science, An introduction to materials in medicine –Academic Press, 2013;
- 2. Materia Total database https://portal.totalmateria.com/en/search/advanced
- 3. https://link.springer.com/chapter/10.1007/978-3-662-46836-4_7

EMERALD

Page | 137

The Education, Scholarships, Apprenticeships and Youth Entrepreneurship EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC

MECHATRONIC SYSTEMS

E-toolkit –

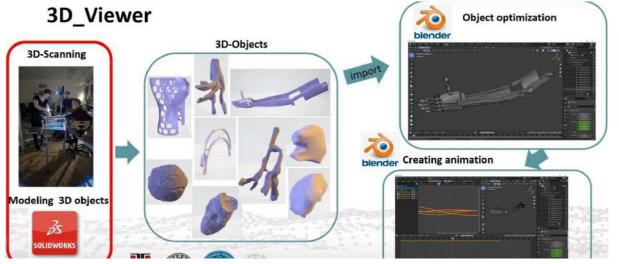
Virtual Reality/Augmented Reality

Project Title	European network for 3D printing of biomimetic mechatronic systems 21-COP-0019
Output	O2 - EMERALD e-toolkit manual for digital learningin producing biomimetic mechatronic systems
Module	Virtual Reality /Augmented Reality (VR/AR)
Authors	Martin ZELENAY, Branislav RABARA

Working together for a green, competitive and inclusive Europe

CONTENT

1	Introduction. Overview of whole process	139	
2	Building Augmented Reality applications	140	Page 138
	2.1 Introduction to Blender software	140	
	2.2 Creating website to display AR models	149	



1 Introduction. Overview of whole process

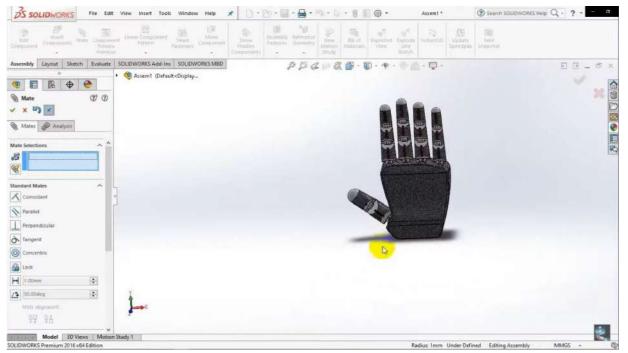


To create the 3D preview in Augmented reality we need 3D objects, we can get this through following steps:

- 3D scanning
- Or modeling of the 3D objects

Then there is a process which involves object optimization and creating animation.

Here we can see the scanning scanning of a hand in detail:

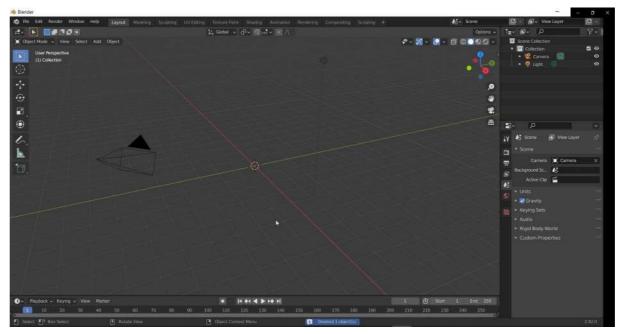


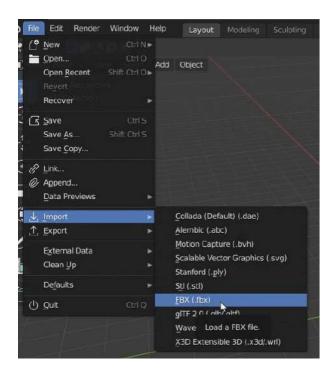
2 Building Augmented Reality animations

2.1 Introduction to Blender software

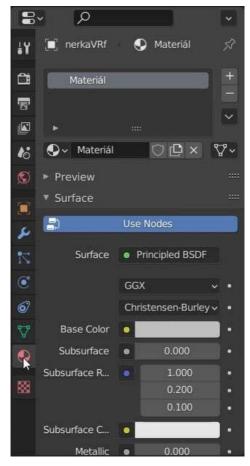
We can also model an object in software called SolidWorks or similar.

If we have the object in as a 3d object, we need to import them into program where we're going to optimize these – in our example we use Blender.





That means if we have a vertex files, we can create animation in Blender software. This is a simple process where we import the model first:



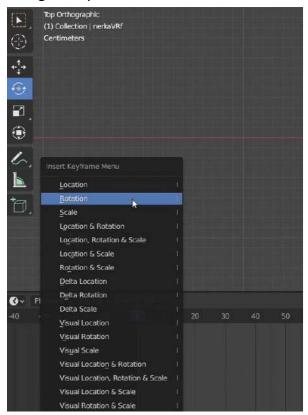
We can change the materials or specifications of the object we will switch to view specifically color palette of this object in right bottom corner:

We have different axis in top right corner:

And from the bottom of the screen we can expand the timeline where we can create individual frame.

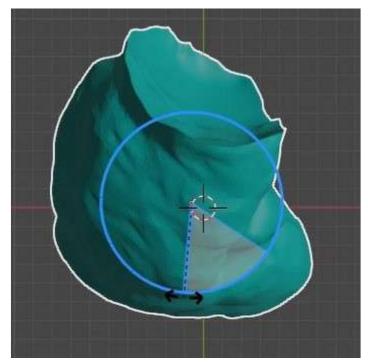
This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page ! 142



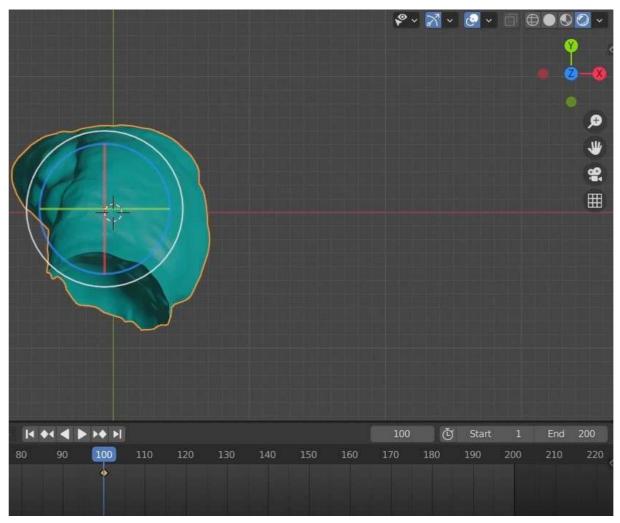
We will set the starting and ending of the timeline

On the first second of timeline, we will create a first frame of the rotation through axis y – by pressing the KEY button "I". Then selecting Rotation from the Edit Mode, or by pressing "R" we rotate the object through axis y.



We will fix this position at 100. This means we will move to frame 100 with mouse and then rotate the object by pressing "R" and then pressing the KEY button "I" to fix it.

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.



Page | 144

Working together for a green, competitive and inclusive Europe

Then we will move to the frame 160 by mouse over Timeline and again rotating over axis y we rotate the object. And again, we will fix the position and by pressing "I" then moving to the last one at 200, rotating object again by "R". We will fix the position.

If we are unsatisfied with specific frame, we can remove it With DELETE key and we can replace it, we need to rotate the object according to the axis Zed Z. And we can fix it again at this position on the timeline.

Page | 146

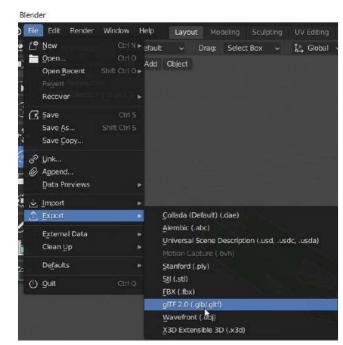
 View
 Marker
 1
 C
 Start
 1
 End
 200

 20
 40
 60
 80
 100
 120
 140
 160
 180
 200
 220

Here is preview of another object where we created another animation:

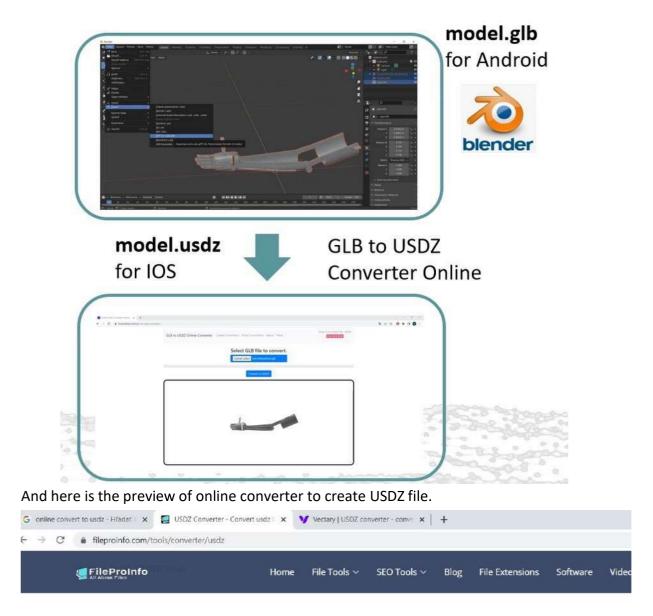
We can also create more complex animations.

Once we have the objects created, we need to save them and export them into Glb file for Android.



Page | 147

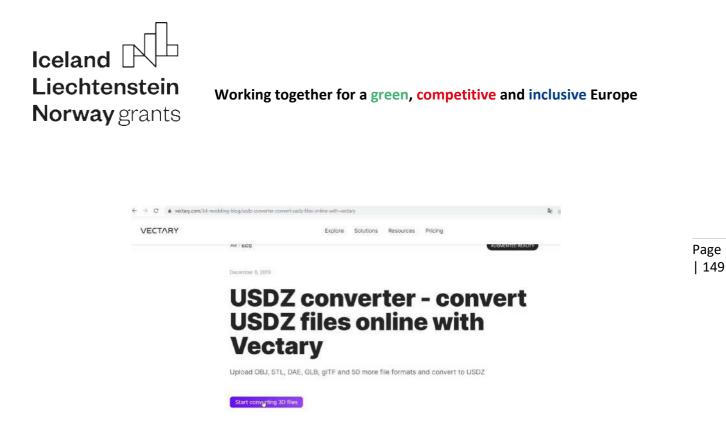
Or we can use the USDZ format, which is for IO OS, we can find the online core value converter for such.



Page | 148

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

USDZ Converter Online & Free


Our free usdz converter online tools does not required any registrations and installations on your system, 100% free and online **universal scene description zipped format** (.usdz) converter tool. Open from any device with a modern browser like Chrome, Opera and Firefox.

2.2. Creating website to display AR models

Once we have the individual models, we use the web interface WEB APP - 3D Viewer, which is used to create preview of the 3D models using the HTML code.

At <u>www.modelviewer.dev</u> we have the documentation and examples. This documentation is right iterated to the specific model viewer. And we can utilize the editor <u>https://modelviewer.dev/editor/</u> where we can test our code, there are some examples from where we can get an inspiration.

@ <model-viewer>

Easily display interactive 3D models on the web & in AR

script type="module" src="https://unpkg.com/@goo iewer.min.js">	grevinder-viewevvorat/moder
I — Use it like any other HTML element>	
model-viewer alt="Neil Armstrong's Spacesuit fro	A REAL PROPERTY AND A REAL
rograms Office and National Air and Space Museum	
ssets/models/NeilArmstrong.glb" ar environment-i ssets/environments/moon_1k.hdr" poster="shared-	nage shared-
ssets/models/NeilArmstrong.webp* shadow-intendit	
ssets/moters/weilx/mstrong.woop snabow-intenait ction="pan-y">	y= 1 camera-controls touch
Scione ban-A setupori-Alemena	
rinned size 223 d.KH. valages v2 1 1	
rzipped size 223.4 KB release v2.1.1	

Tools

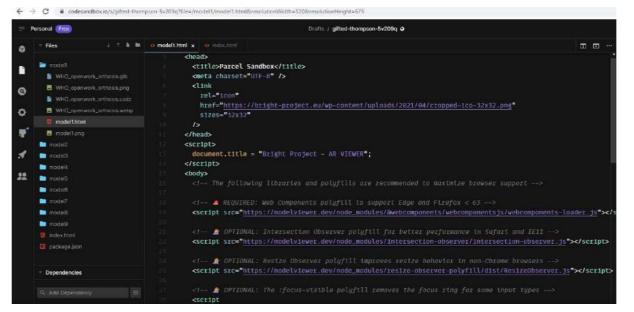
Use our Editor to test your 3D models and download a starter website. Generate your own 3D Twitter card for any website.

Working together for a green, competitive and inclusive Europe

Once we have the code, we need to publish it. Either this could be own web server or it could be a code sandbox where we will publish our code. It's free it only requires registration at https://codesandbox.io/

There we can start a website. Here in our example we can see specific environment where we have index, which is a main site.

Through this we can redirect to other imported sub models. As you can see from the screenshot, it contains the models. For example, here we can click on the first object model1.html:



The sub site of the first object contains individual code as well.

The site will generate from 3Dmodel html code a model displayed in augmented reality, either Android or iOS. Which we can click, we can rotate it and interact with.

EMERALD

Page | 152

The Education, Scholarships, Apprenticeships and Youth Entrepreneurship

EUROPEAN NETWORK FOR 3D PRINTING OF BIOMIMETIC

MECHATRONIC SYSTEMS

E-toolkit –

3D PRINTABLE ROBOTIC ARM

Project Title	European network for 3D printing of biomimetic mechatronic systems 21-COP-0019
Output	O2 - EMERALD e-toolkit manual for digital learningin producing biomimetic mechatronic systems
Module	3D Printable Robotic Arm
Authors	Filippo SANFILIPPO, Martin Bjaadal ØKTER, Filip GÓRSKI

Content

1.	Introdu	duction		
2.	3D Prir	nted programmable robotic grippers 155		
	2.1.	Introduction to 3D printed robotics 155		
	2.2.	Programming Robotic Arms using Arduino Platform 156		
	2.3.	Design and 3D printing of robotic arms		
	2.4.	Use of robotic arms as haptic devices 158		
3.	Biomin	netic 3D printable robotic gripper159		
	3.1.	Introduction		
	3.2.	Construction		
	3.3.	Control		
	3.4.	Software		
	3.4.	1. AS5600 162		
	3.4.	2. PID		
	3.4.	3. pwmMotor		
	3.4.	4. HapticSensor		
	3.4.	5. HapticArm		
	3.5.	Manufacturing and testing 170		
4.	Summa	ary171		
Litera	ature			

1. Introduction

This toolkit presents construction, programming, assembly and tests of a 3D printable robotic arm that can be used as a haptic device. The robotic arm was constructed as a project realized by University of Agder lecturers and students, as an educational example on how to construct and program simple robotic grippers. It has been used during the EMERALD project summer school in year 2022, by students of all universities involved in the project consortium.

This toolkit has been made openly available as a GitHub solution, available under the following link: <u>https://github.com/Microttus/HapticSommerSchool/tree/main</u> [1]. This document reflects the contents of the GitHub solution and also presents basic introduction to robotic grippers.

Working together for a green, competitive and inclusive Europe

2. 3D Printed programmable robotic grippers

2.1. Introduction to 3D printed robotics

Robotic arms have been an integral part of industrial automation, healthcare, and various other domains. The convergence of 3D printing technology with robotics has given rise to programmable robotic arms that offer Page | 155 enhanced versatility, cost-efficiency, and customization.

Various parts of robotic arms can be 3D printed, including joints, grippers, and even end-effectors. The ability to customize these parts to suit specific tasks is a notable advantage of 3D printing in robotics [2], with example of simple 3D printed parts shown in Figure 1.

Figure 1. Robotic arm parts 3D printed using low-cost FDM technology [2]

3D-printable robotics is characterized by its adaptability and customization. Robotic arms can be designed and printed to suit a range of applications, from educational platforms to industrial automation [3]. 3D-printed robotic arms have found a niche in education, enabling students and researchers to experiment with robotics and gain hands-on experience – which was also a point of this toolkit. The availability of DIY kits and open-source designs has democratized access to 3D-printable robotic arms, fostering innovation and experimentation in the robotics community [4].

3D-printed programmable robotic arms have made inroads into manufacturing, streamlining processes and increasing efficiency. They are used for tasks such as pick-and-place operations and quality control. In the medical field, these robotic arms can assist in surgeries, offering precision and minimally invasive procedures. Rehabilitation and physical therapy applications are also emerging [3].

Working together for a green, competitive and inclusive Europe

2.2. Programming Robotic Arms using Arduino Platform

A crucial component of any robotic arm is its manipulator. Robotic arms consist of joints and links that mimic the movements of a human arm. These are controlled by motors, and the coordination of these components enables precise movement and manipulation [5]. To achieve programmability, robotic arms require advanced Page control systems. These systems can be based on traditional methods like PID control or more advanced methods | 156 such as machine learning and computer vision [3].

Programming and controlling robotic arms is a critical aspect of robotics, and the Arduino platform has been widely used as a basic controller for various robotic arm applications. Several papers and resources discuss the integration of Arduino for this purpose.

In a paper titled "Arduino-Based Trainable Robotic Arm," the authors propose a trainable robotic arm implemented based on the Arduino platform. This approach leverages the "teach" function of Arduino for control [6]. Another publication titled "DIY Arduino Robot Arm with Smartphone Control" demonstrates the construction of a robotic arm that can be wirelessly controlled and programmed using an Arduino board. It includes custom-built Android applications for control (Figure 2) [7].

Figure 2. Use of Arduino in a "do-it-yourself" project for 3D printable robotic arm [7]

The "Development of an Arduino Controlled Robotic Arm" paper outlines the creation of a five-degree-offreedom (5-DoF) robotic arm controlled by Arduino. This project is designed for pick and place applications and showcases the versatility of Arduino in controlling robotic arms [8]. The "DIY Arduino-Controlled Robotic Arm" demonstrates the creation of a robotic arm using Arduino for control. This resource showcases the use of Arduino as the central control unit for a functional robotic arm [9].

These papers and resources offer valuable insights into the use of Arduino for programming and controlling This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Working together for a green, competitive and inclusive Europe

robotic arms, highlighting its versatility and applicability in various robotic arm projects. Researchers and enthusiasts can explore these references to gain a deeper understanding of Arduino-based robotic arm development.

2.3. Design and 3D printing of robotic arms

Current technology allows to use various 3D printing technologies in construction of low-cost robotic arms. As shown in previous chapters, many designs can be used as DIY projects, to create home-made or school-made robotics. Students and researchers interested in this topic may easily find many suitable projects, along with customization possibilities. Fused Filament Fabrication (FFF) is a versatile additive manufacturing method used to create 3D-printed robotic arm components, including grippers and whole arms. Several papers and research studies showcase the application of FFF for building functional robotic components.

A comprehensive review of robotic arm grippers is presented in the paper "Current Designs of Robotic Arm Grippers." This review discusses various designs of grippers, many of which can be created using Fused Filament Fabrication. It identifies benefits and drawbacks of different gripper designs, providing insights into the use of FFF for gripper fabrication [10].

In the paper titled "Design and 3D Printing of a Robotic Arm," the authors introduce the design concepts and the 3D printing procedure for a robotic arm created using 3D printing technology. While this paper primarily focuses on design concepts, it highlights the significance of 3D printing in the fabrication of robotic arms [11].

A paper titled "FDM Based Custom 3D Printer Development in Robotic" discusses the development of a custom 3D printer that can be utilized for robotic arm component fabrication. This research showcases the potential of 3D printers for creating robotic arm mechanical components with precision and low tolerances [12]. In "Current Designs of Robotic Arm Grippers," an underactuated adaptive 3D printed robotic gripper is presented. This gripper is designed for interactions with unpredictable environments and demonstrates the potential of 3D printing in creating adaptable robotic components, including grippers [13].

These papers and research studies underscore the use of Fused Filament Fabrication (FFF) as a viable method for creating robotic arm components such as grippers and whole arms. Researchers and robotics enthusiasts can explore these references to gain insights into the capabilities and applications of 3D printing in the realm of

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 157

robotics.

2.4. Use of robotic arms as haptic devices

Haptic devices, which provide users with tactile feedback in virtual environments, have gained significant attention in various fields, including virtual reality, telemedicine, and robotics. Robotic arms, with their ability to Page simulate touch and force interactions, have emerged as valuable tools for creating immersive haptic experiences. ¹¹⁵⁸ In this chapter, the use of robotic arms as haptic devices is explored, highlighting key studies and developments in the field.

Robotic arms have been employed in teleoperation scenarios where human operators can remotely control robotic arms equipped with haptic feedback systems [14]. Virtual reality (VR) applications benefit greatly from the integration of robotic arms to enhance the sense of touch and presence [15]. Robotic arms as haptic devices play a vital role in medical training and simulation. Some researchers discuss the application of robotic arms in medical simulations for training medical professionals. Robotic arms can replicate complex medical procedures and provide trainees with realistic haptic feedback, improving their skills and reducing the risk associated with real patient interventions [16].

While the use of robotic arms as haptic devices offers numerous advantages, challenges remain, including cost, scalability, and the need for precise control algorithms. Future research should focus on developing more affordable and accessible robotic haptic systems, as well as enhancing their capabilities for a wider range of applications.

In conclusion, robotic arms as haptic devices have shown immense potential across various domains, from medicine to entertainment and accessibility. The integration of haptic feedback into robotic arms continues to evolve, offering new opportunities for realistic and immersive user experiences in virtual and physical environments.

Working together for a green, competitive and inclusive Europe

3. Biomimetic 3D printable robotic gripper

3.1. Introduction

The primary goal of the project presented in this toolkit was to design an easy-to-build and assemble haptic installation that can function as a haptic device. This is achieved through the utilization of a joint with integrated springs. By employing this innovative approach, it becomes feasible to achieve greater motor displacement for a relatively smaller amount of force when compared to a rigid robotic arm. This design allows for enhanced tactile feedback and improved user experience in haptic interactions.

Contents of this chapter are mostly taken from the GitHub solution, available under [1].

3.2. Construction

The robotic gripper was designed in 3D CAD with typical assumptions for simple, one-axis robotic arms. The basic construction is presented in Figure 3 and the 3D models for 3D printing are available in the GitHub repository at [1]. Also, a full disassembly instruction, containing animations of all steps with names of standardized parts was prepared. It is available online, under link [17]. Examples of operations presented in the online instruction are presented in Figure 4.

Working together for a green, competitive and inclusive Europe

Figure 3. The robotic gripper 3D design [17]

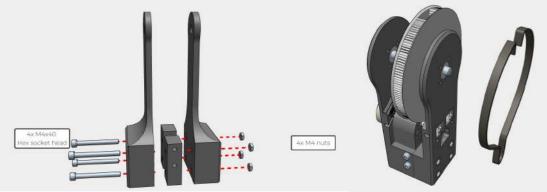


Figure 4. Disassembly instruction of the robotic arm, available at [17]

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 160

Working together for a green, competitive and inclusive Europe

3.3. Control

In Haptic devices there are two main ways for control. Impedance control aim to steer the position by reading the motor force. Admittance control aim to control the force of the device by adjusting the position. This two are integrated as methods and can be used directly, By the use of the low level libaries these control codes may Page also be created by the user. A descriptive block diagram of the two control loops is presented in Figure 5.

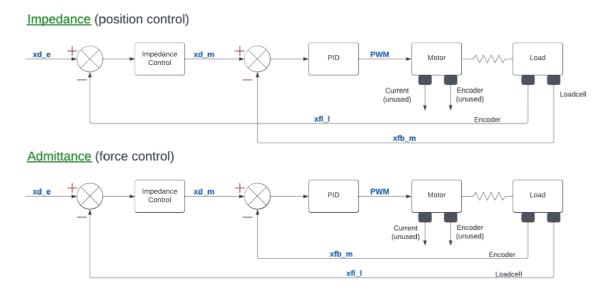


Figure 5. Control structure of the haptic arm [1]

3.4. Software

The software was built to be as modular as possible, aiming to ensure the easy operation of the robotic arm for users with varying programming backgrounds. The course is designed to cater to students with minimal to no prior experience in programming and control theory while also providing the opportunity for experienced personnel to conduct advanced control theory testing. For less experienced users, the steering library can be used, requiring adjustments only to control factor values. More experienced users have the option to build the control part themselves for implementing alternative steering methods. The basic libraries for data collection can be adapted and modified by experienced users to achieve optimal control, higher precision, and further

Working together for a green, competitive and inclusive Europe

system development.

The software comprises five classes. The AS5600 library, provided by Seed-Studio, facilitates the easy retrieval of data from the absolute magnetic encoder. Additionally, three low-level classes—PID, pwmMotor, and HapticSensor—are dedicated to data retrieval and the hard-coded control of the haptic arm. The final library, Page | 162 HapticArm, offers a variety of control methods based on control theory, utilizing the aforementioned classes for arm control.

3.4.1. AS5600

The AS5600 library is created and distributed by Seed-Studio, which is the producer of the encoder used in this project. The data are retrieved using I2C and memory access and the code are therefore manageable but too complicated to learn if you are not interested in the code side. The library gives the user an easy-to-use interface, retrieving the magnets position. This library needs to be put inside the programming folder or the main Arduino library folder for the program to work.

The *getRawAngle* is the only method used of this library. The command return the position of the magnet as a 12 bit signal (0-4095).

3.4.2. PID

The PID class are made for easy implementation of PID loops. It takes advantage of the object properties of classes for the user to easily be able to create multiple loops with different PID values based on the same class. The PID class have three public method in addition to the constructor. One which gives the possibility of a standard PID loop using Kp, Ki and Kd and one which provide the possibility of a PID controller with back calculation integration as an anti wind-up method. The last one is a complimentary filter which are used as a low pass filter on the sensor data. The PID method uses the same values and can be switch during operation if needed.

1. PID(float Kp_in, float Ki_in, float Kd_in)

The PID constructor is used to initialize the PID object. The constructor take Kp, Ki and Kd as input and a single PID object are intended to be used for a single PID loop. The values of the PID block cannot be changed during

operation.

2. calculate(float value, float target)

The calculate method is used if a standard PID loop are intended to be used. This method do not have an anti wind-up integrated. The PID equation used are the standard European method, see equation 1.1. The method | 163 have the current value intended to be used and the target as input. The aim target may be changed during operation, which is a key feature for the use of control systems. The loop time is calculated for every loopback by the object for precision loop calculation. This makes the object independent of the clock frequency or the loop time. And the code may stagger without the PID failing, taking advantage of the variable loop time calculation.

$$u_d(k) = K_p e(k) + K_i (u_{i-1} + e(k) \cdot dt) + K_d \frac{e(k) - u_{d-1}}{dt}$$
(1.1)

ud is calculated value, *e*(*k*) is the error of the system, *ui* is calculated integral constant and *dt* the time step.

3. backcalc(float value, float target, float backVal, float satutaionMin, float saturationMax)

The backcalc method use the same equation as the calculation method, as well as iterate over the same loop time and uses the same Kp, Ki and Kd. These properties make it possible for the user to switch between these two methods. The value are the current value input for the calculation and the target value are the target for the calculation. In addition to these two, the backVal input is used for tuning the anti wind-up section. The saturtionMin and saturationMax inputs are used for the upper and lower limit for the anti wind-up.

The anti wind-up constant could be set to 1 which would work great. This method should be used as the final loop before sending the value to the motor. If this is the case, an upper limit of 255 and lower -255 is advised, corresponding to the upper and lower limit for PWM. In the backcalc method, the integral part of the PID calculation are switched with this equation 1.2.

$$u_d(k) = K_p e(k) + K_i (u_{i-1} + (e(k) + \frac{e_p(k) - u_{d-1}}{T}) \cdot dt) + K_d \frac{e(k) - u_{d-1}}{dt}$$
(1.2)

Working together for a green, competitive and inclusive Europe

 e_p is the saturated u_d and T is the back calculation value.

4. compfilter(float in_val, float alpha)

The compliter method is integrated as a way to use the equation for complimentary for values. The Page complimentary filter may be used as a low-pass filter or high-pass filter, depending on the inn-values. A low-pass $|^{164}$ filter can be essential for readable sensor-data. The in_val are the new data from the sensor used for calculation. A separate PID object should be initialized for every sensor in the system needing a filter. The earlier results are remembered by the object, and the same object cannot be used for different sensor-data. The alpha constant is the tuning value for the filter. This decides how much the new values are to be weighted. This value is set to 0.01 as standard and do not need to be given for this value, unless a different number is to be used.

The method return the final calculated value. The equation used is 1.3.

$$u_d = (1 - \alpha) \cdot u_{d-1} + \alpha \cdot e(k) \tag{1.3}$$

3.4.3. pwmMotor

The pwmMotor class are a collection of different method used for control of a PWM motor using a H-brigde style motor controller and collect data from a hall encoder. The class consist of five public methods in addition to two private ones and the constructor. The two private methods are used for the collection of data as interrupt from the hall encoder and are set to "static void" as all methods interacting with interrupt variables do need to be of this data type. This is also the reason for the "static void" data type of the reset_hall_val method.

1. pwmMotor(int forwardPin_in, int backwardPin_in, int pwm_in, int hallPinOne_in, int hallPinTwo_in)

The constructor of the pwmMotor class have five inputs for correct setup of the connection between the microchip and the motor controller. The first two inputs are the microchip pins, which are to be connected to the directional control of the motor. These pins are used for digital signals. The third is the pin which the PWM signal are sent to. The last two are the pins which the hall sensor pins are connected. Mark: On Arduino Due the only two pins supporting interrupt are 0 and 1.

2. goToSpeed(int motorSpeed)

Working together for a green, competitive and inclusive Europe

This method is the main method used for control of the motor. The method receives the motor speed as an integer. Inside the method, the number will be limited to -255 to 255 to ensure the value do not exceed the capabilities of the microchip. The Arduino Due have an 8 bit DAC and these values are preset for this intent, but may be adjusted if a different chip set is to be used. If motorSpeed is negative the method will spin the motor Page backward and on the contrary if the value is positive the motor is spun forward. The method also check if the value is equal to the last value asked. The operation of changing direction may be more time conceiving than just adjust the PWM sequence. Checking if the value have changed and immediately break if the value are the same, saves computational time. A value of -1 for backward and one for forward, are additionally commutated and saved for the intent of being able to check the motor direction elsewhere in the code. This is used for the emergency brake.

3. stop()

The stop method immediately set both directional control pin to zero, and then adjust the PWM signal to zero as well. In this configuration, the motor will run free, which is the optimal configuration if the arm have hit something and need to be stopped immediately. This method is used by the emergency break due to endstops, but may also be implemented if the arm is used for obstacle avoidance or as a cobot.

4. check_rotation()

The check rotation method return the angle of the arms based on the number of trigger events from the hall sensor interrupt routines. While reading the count, the interrupt routine have to be temporarily paused. This means that for every iteration of the method, steps may be missed.

5. reset_hall_val()

This method is used by the calibration method of the arm. At the end of the calibration sequence, the arm is situated at angle 0. Since the motor encoder is incremental, a fixed start position is necessary. The interrupt will start counting as soon as the motor object is initialized, and the count have to be zeroed at a known location. The calibration routine calls this method in the known zero position, which set both trigger event counts to zero.

6. return_motor_dir()

Working together for a green, competitive and inclusive Europe

The value saved by the goToSpeed method is internal, and the return_motor_dir method can be called to read the current value. This is used by the end stop emergency stop. The motor direction value is used for the trigger event detection as well.

3.4.4. HapticSensor

The Haptic Arm have five types of sensors which are integrated into the platform. The motor encoder is implemented in the pwmMotor library. The remaining four are the data collected through this library. The AS5600 library is used for the reading of the absolute position encoder. The library consist of five methods in addition to the constructor. Four are the methods for returning sensor data, and the last one is for configuration of the end positions of the arm for the position sensor.

1. HapticSensor(int forcePin, int currentPin, int switchPinOne, int switch-PinTwo)

The HapticSensor constructor takes four inputs, which are the pins which the sensors are connected to. ForcePin is the pin for the load cell, which has to be connected through an instrument amplifier and are read as an analogue signal. The currentPin is the pin connected to the current sensor, which is read as an analogue signal as well. switchPinOne and switchPinTwo are the pin which the signal side of the endstops. In the constructor, all the input pins are set as inputs, and the analogue read resolution set to 10 bit.

2. readForce()

The readForce method return the force exposed to the end of the arm. The signal read from the load cell is adjusted due to a graph found through testing with known weights at the connection point on the arm. The force is calculated from the weigh and adjusted for the current angle of the arm for neglecting the weight of the swing arm. The value is adjusted with a low pass filter via the PID library before returned as a float.

3. readPos()

The readPos method use the AS5600 library to retrieve the absolute position of the arm from the magnetic encoder. The belonging angle is calculated and returned as a float. The calculation use the values found by the calibration sequence for the value of the magnetic encoder at the endstops.

Working together for a green, competitive and inclusive Europe

4. readCurrent()

This method read the value provided by the current sensor, which is situated between the motor and the motor controller. The signal is converted from a bit value into volt and adjusted for the signal at zero current, roughly in the middle. The volt signal is then multiplied with the amp per volt value given for the sensor. A lowpass filter using a PID block are used to smooth out the signal. The current is returned as a float.

5. readSwitch()

The readSwitch method update both values in the list containing the state of the two endstop switches connected. And finally returning these as a pointer to the list. Therefore, the data type int* is used. The list need to be initiated as a class object and not initialized in the object, as the list in that case would be saved in the stack (which is temporary) and removed when the method returns.

6. calibrateEncoder(int newMinVal, int newMaxVal)

The values for the magnetic absolute encoder are saved as object parameters, such that the calibration sequence is not absolutely necessary if the values for a specific configuration are well known. These values are set in the constructor. After the calibration sequence, the found values are used to change these private values by the use of the calibrateEncoder method. The method return the current raw bit value of the magnetic encoder for the intent of using it during calibration. The argument are optional, but the values will be set to 0 if no value is provided.

3.4.5. HapticArm

The HapticArm library is a class combining the lower lever control classes of the Haptic Arm with the intent of controlling the arm using control theory. The library consist of four public and four private methods in addition to the constructor. The of the private method two are calculating the moved length, speed, and acceleration based on the current and part position using numerical mathematics and the same as angles. The last two are the emergency protocols witch read data to ensure the arm have a reasonable behaviour and engage the stop routines if not.

Working together for a green, competitive and inclusive Europe

1. HapticArm(int motorSettings[], int sensorSettings[], int PIDset[][3])

The HapticArm constructor takes two list and one multidimensional list as input. The first list are the values used to set up the motor object, in total four values. The object for using the other classes are set up inside this class, which means that all necessary values have to be delivered by this object as a middle man. As a way to | 168 avoid having 15-20 input for the object, it is initialized with lists. The second list are the values for the sensor class, and need five objects. The constructor do not need to know the size of the list, but enough values have to be given for the constructor to succeed. The third list is a Nx3 matrix, and contains the values Kp, Ki and Kd for all PID objects which are used in the object. The objects are the defined in the constructor as well as other needed constant. One of this is the type of switch used. Original the endstop switches are set to normally closed (NC) corresponding to "1". If the setup support NO, this would be better, but the Due does not support the needed pull-down resistor.

2. goToPos(float requiredPos)

This method is the basic inner loop of the motor control. It read the position of the arm and adjust the PWM signal sent to the motor, trying to achieve the given required position. This method use the Position PID object, which is the first three values given in the PID matrix. This PID should be the first to be tuned for optimal control of the arm, due to the fact that it is the inner loop for the goAdmittance method. For the PID calculation, back calculation is used for saturation of the signal.

3. calibrateArm()

The calibrateArm method are the main calibrate sequence which check the position of the magnet at the end stops and zero the motor encoder at 0 degrees. By reading both switches during the sequence, the switch located at zero degrees and 250 depresses is mapped, and take care of misplacement of these wires. The motor speed will be manual, set to the minimum safe speed which the arm will be able to rotate.

For visual confirmation of started sequence, the method will print "Calibration started" to the serial monitor. After successful calibration, the maximum and minimal magnetic value will be printed at the serial monitor. This value may be used to adjust the preset values in the code. The calibration sequence may be left out if the preset

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page

Working together for a green, competitive and inclusive Europe

values are to be trusted and the motor encoder is not in active use.

4. goImpedance(float massConstant, float damperConstant, float springConstant)

This method enables the user to control the arm using Impedance control, which means reading the Page movement of the arm and adjusting the output torque of the motor. The private method movedAngle are used 169 to find the radial movement of the arm and the current are read by using the sensor object. The movement values are then multiplied with the mass, spring, damper values, which are given by the user as inputs for the method. The equation used is 1.4.

$$\tau = M\ddot{\theta} + D\dot{\theta} + K\theta \tag{1.4}$$

The resulting torque is with the read current used to calculate a new speed and feed to the motor. The emergency test is embedded for safety.

5. goAdmittance(float massConstant, float damperConstant, float spring- Constant, float initialPosition)

This method enables the user to control the arm using Admittance control, which means reading the input force and controlling the position of the arm. The system will act as a spring damper system and centre around the given initial position value. The private method movedLenght is used to find the moved length since last iteration. The length is based on the given length of the arm and uses trigonometry. It is an estimate based on numerical iteration of a curve divided into triangles, and the frequency of the code are important for the validation of the method.

The current applied force are read by the use of the sensor object and the corresponding offset length are calculated using this equation 1.5.

$$x_{new} = \frac{F - D\dot{x} - M\ddot{x}}{K} \tag{1.5}$$

The calculated length is calculated as angle and applied to the initial angle value. Finally, the required angle is sent to the goToPosition method used for the inner loop. The emergency test is embedded in the goToPosition method.

6. emergencyCheck()

Working together for a green, competitive and inclusive Europe

The method check the current motor direction and if any of the end stop switches are activated. If one of the switches are activated and the motor direction is pushing the arm further into the switch, the emergency brake is activated. If the motor direction are away from the switch, it is assumed the motor are trying to fix the problem and the break are not activated.

Page | 170

3.5. Manufacturing and testing

The parts of the robot arm were 3D printed using the Fused Filament Fabrication technology, of PLA material. Using standard nuts and bolts, springs and other elements, mechanical part and actuators were assembled. Using Arduino, sensors and other electronic components, the electronic part was assembled. The result is presented in Figure 6. Total of 4 arms were manufactured and successfully launched.

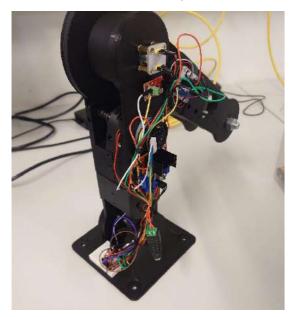


Figure 6. Assembled robotic arm made of 3D printed components [1]

Testing of the arm was also realized, checking correctness of movement and functioning as a haptic device. Some of its results can be found in a film, available under link [18] (Figure 7).

Working together for a green, competitive and inclusive Europe

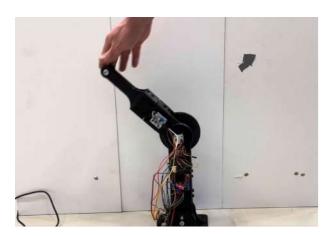


Figure 7. Haptic arm tests [18]

4. Summary

In this toolkit, a concept of a simple robotic arm usable as a haptic device was presented. The device was designed, 3D printed, programmed and tested using widely available technologies and low-cost components. The whole project was made freely available as an educational asset for the interested students and researchers worldwide through the GitHub platform. It was proven that it is possible to use available 3D printing and robotic technologies to manufacture simple, working robotic arms in short time.

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 171

Working together for a green, competitive and inclusive Europe

Literature

- 1. https://github.com/Microttus/HapticSommerSchool/tree/main, access: January 2023
- 2. https://www.instructables.com/3D-Printed-Robot-Arm/
- Marín Garcés, J.; Veiga Almagro, C.; Lunghi, G.; Di Castro, M.; Buonocore, L.R.; Marín Prades, R.; Masi, A. MiniCERNBot Educational Platform: Antimatter Factory Mock-up Missions for Problem-Solving STEM Learning. Sensors 2021, 21, 1398. <u>https://doi.org/10.3390/s21041398</u>
- 4. https://all3dp.com/2/3d-printed-robot-arm-diy-robotic/
- Anatoliotakis, N.; Paraskevopoulos, G.; Michalakis, G.; Michalellis, I.; Zacharaki, E.I.; Koustoumpardis, P.; Moustakas, K. Dynamic Human–Robot Collision Risk Based on Octree Representation. Machines 2023, 11, 793. <u>https://doi.org/10.3390/machines11080793</u>
- 6. Shweta, K & Pattar, Nikhil & Kuntoji, Rahul & V, Arpitha & B V, Chetan. (2017). Arduino Based Trainable Robotic Arm. 2. 337-339.
- 7. https://howtomechatronics.com/tutorials/arduino/diy-arduino-robot-arm-with-smartphone-control/
- 8. Shaibu, H. A. A., Ogakwu, P. A., Binfa, B., & Ibrahim, A. A. (2019). Development of an Arduino Controlled Robotic Arm. Journal of Good Governance and Sustainable Development in Africa, 5(2), 73-82.
- Ali, Hussein & Hashim, Yasir & Alsakkal, Ghadah. (2022). Design and implementation of Arduino based robotic arm. International Journal of Electrical and Computer Engineering (IJECE). 12. 1411. 10.11591/ijece.v12i2.pp1411-1418.
- 10. Hernandez, Jaime & Sunny, Md. Samiul & Sanjuan, Javier & Rulik, Ivan & Islam, Ishrak & Ahamed, Sheikh & Ahmed, Helal & Rahman, Mohammad. (2023). Current Designs of Robotic Arm Grippers: A Comprehensive Systematic Review. Robotics. 12. 5. 10.3390/robotics12010005.
- 11. Kitsakis, Konstantinos & Petrou, Nick & Tanos, Ilias & Kechagias, John. (2016). Design and 3d Printing of a Robotic Arm.
- Prianto, E., Herliansyah, M. K., Pramono, H. S., Husna, A. F., Adam, R., & Raditya, A. E. (2022, December). FDM Based Custom 3D Printer Development in Robotic Arm Mechanical Prototype Printing. In *Journal of Physics: Conference Series* (Vol. 2406, No. 1, p. 012005). IOP Publishing.
- Hernandez, J.; Sunny, M.S.H.; Sanjuan, J.; Rulik, I.; Zarif, M.I.I.; Ahamed, S.I.; Ahmed, H.U.; Rahman, M.H. Current Designs of Robotic Arm Grippers: A Comprehensive Systematic Review. Robotics 2023, 12, 5. <u>https://doi.org/10.3390/robotics12010005</u>
- 14. Verner, L. N., Jeung, K. A., & Okamura, A. M. (2005). 15 effects of gripping and translational forces on teleoperation. Multi-point Interaction with Real and Virtual Objects, 231-241.
- 15. Van der Meijden, O. A., & Schijven, M. P. (2009). The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surgical endoscopy, 23, 1180-1190.
- 16. Ruthenbeck, G. S., & Reynolds, K. J. (2015). Virtual reality for medical training: the state-of-the-art. Journal of Simulation, 9, 16-26.
- 17. https://instructions.online/?id=3988-mechanical%20assembly
- 18. <u>https://youtu.be/x0tvgowaUfE?si=nHkEfITcb-D-KBVI</u>

This project has been funded with support from the Iceland Liechtenstein Norway Grants. This publication [communication] reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Page | 172

CONCLUSIONS

As one may notice while going through the EMERALD e-toolkit manual, it becomes clear that this guide is more than just a collection of methodologies and instructions. Developed by the EMERALD consortium partners, the e-toolkit manual is an essential tool that is continuing the Page | 173 theoretical aspects provided in the e-book to hands on real practical applications in the field of biomimetic mechatronic systems that are destined to support people with special needs (with amputated arms). Specifically designed for the conceiving, manufacturing and testing of biomimetic mechatronic systems realized by 3D printing technologies, the provided solutions are designed in the way to meet the real needs of people with amputated arms in the end.

The e-toolkit manual that has been produced as a collective effort of the EMERALD consortium partners is therefore an in-depth laboratory guide that transcends basic knowledge that has been provided in the e-book, offering step-by-step guiding for the conceiving, manufacturing and testing of biomimetic mechatronic systems - from the preliminary stages of Computer Aided Design and Computer Aided Engineering to the final stages of integrating the sensors, assembling, programming, and the applying of Virtual Reality / Augmented Reality methods for the conceived and produced biomimetic mechatronic systems. This comprehensive guide ensures that every crucial aspect of developing biomimetic mechatronic systems is addressed, providing a solid foundation for both students and professors that are involved in this field.

A primary objective of this e-toolkit manual is to inspire the practical implementation of theoretical concepts previously introduced in the e-book by involving and stimulating both professors and students to go deeper in the creating and implementing of the solutions they have been learning for real practical case studies, encouraging them in this way to take theory into practice. This approach not only deepens understanding, but also stimulates creativity and innovation, leading to the development and producing of biomimetic mechatronic solutions by 3D printing methods in a customized way to support real patients with amputated arms.

Moreover, the e-toolkit manual is intended to create one bridge between higher educational institutions, medical institutes and industrial partners, by extending beyond traditional teaching methods and by encouraging the exchange of new ideas and shared knowledge in the field of biomimetic mechatronic systems realized by different types of 3D printing technologies to support real patients with amputated arms in the end. By applying the solutions and methods presented in the e-toolkit manual, and by scaling and multiplying these applications among diverse institutions that are interested about this field, a significant contribution can be made to the lives of patients with special needs (with amputated arms) on a larger scale in the future.

The EMERALD e-toolkit manual serves as a strong example of collaborative learning and innovation by being not just a tool intended to be used for educational purposes, but also to be a stimulative resource for developing innovative real practical applications in order to bring real benefits in the field of biomimetic mechatronic systems that are aimed to be realized by using different types of 3D printing methods to support in a customized way patients with amputated arms in the end.

